
Trajectory Control and Optimization for
Responsive Spacecraft

THESIS

Costantinos Zagaris, Captain, USAF

AFIT/GA/ENY/12-M13

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government. This material is declared a work of the U.S. Government and is
not subject to copyright protection in the United States.

AFIT/GA/ENY/12-M13

Trajectory Control and Optimization for Responsive
Spacecraft

THESIS

Presented to the Faculty

Department of Aeronautics and Astronautics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Astronautical Engineering

Costantinos Zagaris, B.S. Aerospace Engineering

Captain, USAF

March 2012

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GA/ENY/12-M13

Trajectory Control and Optimization for Responsive Spacecraft

Costantinos Zagaris, B.S. Aerospace Engineering

Captain, USAF

Approved:

Jonathan T. Black, PhD (Chairman) Date

Ronald J. Simmons, LtCol, USAF
(Member)

Date

Nathan A. Titus, PhD (Member) Date

AFIT/GA/ENY/12-M13

Abstract

The concept of responsive space has been gaining interest, and growing to in-

clude systems that can be re-tasked to complete multiple missions within their lifetime.

The purpose of this study is to develop an algorithm that produces a maneuver tra-

jectory that will cause a spacecraft to arrive at a particular location within its orbit

earlier than expected. The time difference, ∆t, is used as a metric to quantify the

effects of the maneuver. Two separate algorithms are developed. The first algorithm

is an optimal control method and is developed through Optimal Control Theory. The

second algorithm is a feedback control method and is developed through Lyapunov

Theory. It is shown that the two algorithms produce equivalent results for the maneu-

vers discussed. In-plane maneuver results are analyzed analytically, and an algebraic

expression for ∆t is derived. Examples are provided of how the analytic expression

can be used for mission planning purposes. The feedback control algorithm is then

further developed to demonstrate the simplicity of implementing additional capabil-

ities. Finally, a set of simulations is analyzed to show that in order to maximize the

amount of ∆t achieved, a spacecraft must be allowed as much lead time as possible,

and begin thrusting as early as possible.

iv

Acknowledgements

I believe that one of the most important things in life is recognizing those

around you that play a significant role in achieving your goals. Without a doubt,

if I didn’t have the support of my professors, family, and friends, I would not have

been able to complete my research and keep my sanity. First, I would like to thank

my advisor, Dr. Black, for motivating me to solve my problems. There were many

times that I turned to him for advice when things were not working as they should,

and every time he guided me in the direction that would lead me to the answer I was

looking for.

I would like to thank the members of my committee for taking the time to

give me valuable feedback throughout my research. Also, thanks to all my professors

at AFIT for providing me with the necessary knowledge and tools to excel, and for

helping me both inside and out of the classroom. I always felt comfortable turning to

my professors for help, even if they were not directly involved in my research.

Lastly, and most importantly, I would like to thank my wife, and best friend, for

always believing in me and having the patience to listen to me vent about schoolwork.

Her unwavering support throughout my entire career always reminds me how lucky I

am to have her.

Costantinos Zagaris

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . x

List of Symbols . xi

I. Introduction . 1
1.1 Problem Statement . 3

1.1.1 Phase One: Optimal Control Methods for Responsive Maneuvers 4

1.1.2 Phase Two: Feedback Control Methods for Responsive Maneuvers 4

1.1.3 Phase Three: Scenario Simulation 4
1.2 Thesis Outline . 5

II. Background . 6

2.1 Equations of Motion . 6

2.1.1 Inertial Position and Velocity 6

2.1.2 Classical Orbital Elements . 9
2.1.3 Equinoctial Elements . 13

2.2 Optimal Control Methods . 19

2.2.1 Optimal Control Theory . 19

2.2.2 Numerical Methods for solving the TPBVP 22

2.2.3 Applications of Optimal Control 23

2.3 Feedback Control Methods . 25
2.3.1 Lyapunov Theory . 26

2.3.2 Applications of Feedback Control 27

2.4 Summary . 29

III. Model Development and Methodology . 30

3.1 Optimal Control Formulation . 30

3.1.1 The Cost Functional . 32
3.1.2 The Euler-Lagrange Equations 33

3.1.3 Algorithm Setup . 34

3.2 Feedback Control Formulation . 35
3.2.1 Gain Selection . 36
3.2.2 Controlling the Position of the Spacecraft Within the Orbit . . 37

vi

Page

3.2.3 Thrust-coast Duty Cycle . 38

3.3 Defining Desired Final Spacecraft Position 38

3.4 Summary . 41

IV. Results and Discussion . 42
4.1 Optimal Control Results . 42

4.1.1 Test Case 1 . 42
4.1.2 Test Case 2 . 46
4.1.3 Test Case 3 . 48
4.1.4 Test Case 4 . 49
4.1.5 Summary of Optimal Control Results 51

4.2 Feedback Control Results . 52
4.2.1 In-Plane Maneuver . 52
4.2.2 Out-of-Plane Maneuver . 56
4.2.3 Thrust-Coast Duty Cycle Implementation 59

4.2.4 Summary of Feedback Control Results 62

4.3 Analytical Approach . 63

4.4 Spacecraft Maneuver Simulation . 65

4.4.1 Simulation With Initial Coast Period 69
4.4.2 Simulation With Thrust-Coast Duty Cycle 71

4.5 Summary . 73

V. Conclusions and Future Work . 74
5.1 Overiew . 74
5.2 Recommendations for Future Work 76

Appendix A. The Equations of Motion in Terms of Equinoctial Elements 77

Appendix B. Optimal Control Algorithm in MATLAB 81

Appendix C. Feedback Control Algorithm in MATLAB 97

Appendix D. Supporting Function Files 112

Bibliography . 120

vii

List of Figures
Figure Page

2.1 Earth Centered Inertial Reference Frame 7

2.2 Classical Orbital Elements and Local-Vertical-Local-Horizontal Frame 10

2.3 Equinoctial Frame with respect to ECI Frame [17] 14

3.1 Acceleration vector in LVLH frame 32

4.1 Control curve behavior for values of α 43

4.2 Optimal Solution for Test Case 1 44

4.3 Ground Track for Test Case 1 . 45

4.4 Optimal Solution for Test Case 2 46

4.5 Ground Track for Test Case 2 . 47

4.6 Optimal Solution for Test Case 3 48

4.7 Ground Track for Test Case 3 . 49

4.8 Optimal Solution for Test Case 4 50

4.9 Ground Track for Test Case 4 . 51

4.10 Control Angles for In-plane Maneuver Using Feedback Control . . 53

4.11 COEs for In-plane Maneuver Using Feedback Control 54

4.12 Ground Track for In-plane Maneuver Using Feedback Control . . . 55

4.13 Control Angles for Inclination Change over One Orbit 56

4.14 COEs for Inclination Change Maneuver over One Orbit 57

4.15 Combined Semi-major axis and Inclination Change Maneuver . . . 59

4.16 Control Angles for Inclination Change with Thrust-Coast Duty Cycle 60

4.17 COEs for Inclination Change with Thrust-Coast Duty Cycle 61

4.18 ∆t as a function of Maneuver Duration 65

4.19 Simulation Solution for 10-hour Lead Time 68

4.20 Simulation Ground Track for 10-hour Lead Time 69

4.21 Simulation Solution for 10-hour Lead Time with 1-hour Delay . . . 70

4.22 Simulation Solution for 24-hour Lead Time with Thrust-Coast Cycle 71

viii

Figure Page

4.23 Simulation Ground Track for 24-hour Lead Time with Thrust-Coast

Cycle . 72

ix

List of Tables
Table Page

4.1 Optimal Control Results . 51

4.2 Simulation Results . 69

x

List of Symbols

Roman

A Perturbing acceleration vector
ar Perturbing acceleration component in the radial direction
aθ Perturbing acceleration component in the transverse direction
ah Perturbing acceleration component in the orbit-normal direction
a Semi-major axis
e Eccentricity
E Eccentric anomaly
F Eccentric longitude
F g Force due to gravity

[f̂ , ĝ, ŵ] Unit vectors making up the Equinoctial frame
G Universal gravitational constant
g0 Gravitational acceleration at sea level
H Hamiltonian

h Eccentricity vector component in the f̂ direction
Isp Engine Specific Impulse
i Inclination

[̂i, ĵ, k̂] Unit vectors making up the Earth-Centered-Inertial frame

[̂ir, îθ, îh] Unit vectors making up the Local-Vertical-Local-Horizontal frame
J Cost functional
k Eccentricity vector component in the ĝ direction
L True longitude
M Mean anomaly
m Spacecraft mass
n Mean motion
p Equinoctial element
q Equinoctial element
r Inertial position vector
r Position vector magnitude
T Constant thrust magnitude
Ton Duration of pulse
Toff Duration of coasting period between pulses
t Time
u Control vector
v Inertial velocity vector
V Velocity vector magnitude

vx Inertial velocity component along the î vector

vy Inertial velocity component along the î vector

vz Inertial velocity component along the î vector
vr Velocity component in the radial direction
vs Velocity component in the transverse direction

xi

x State vector

x Inertial position component along the î vector

y Inertial position component along the ĵ vector

z Inertial position component along the k̂ vector

Greek

α Control weighting factor
β Out-of-plane control angle
γ Greenwich local sidereal time
γg Greenwich sidereal time at epoch
∆() Change in a certain variable
δ() Variation of a certain variable
ε Specific mechanical energy
θ In-plane control angle
λ Mean longitude
λ Lagrange multiplier or costate
µ Earth gravitational constant
ν True anomaly
φ Control angle in polar coordinates
ψ Terminal state constraint function
Ω Right ascension of the ascending node
ω Argument of perigee
ωe Earth’s rotation rate

xii

Trajectory Control and Optimization for Responsive

Spacecraft

I. Introduction

Over the past few years interest in responsive space systems has become more

prevalent. The Operationally Responsive Space (ORS) office has been tasked with

the responsibility of rapidly developing new capabilities to provide low-cost access to

space. According to Col Newberry, however, the term “responsive space” defines a

system that is not only developed quickly but could also respond to new taskings

within days, hours, or even minutes [1]. In order to achieve true responsiveness at

the lowest cost, spacecraft must be able to maneuver multiple times throughout their

lifetime and accomplish multiple missions. Allowing space assets to be re-tasked in this

manner could significantly decrease the overall cost of maintaining space programs.

Dr. Wertz writes that the average cost of a space system launched by the United

States is 2.5 billion dollars, and average development time approaching a decade [2].

The goal for responsive systems is to supplement on-orbit assets in order to drive the

cost down to less than 20 million dollars [2].

Newberry discusses responsive maneuvers that will place a satellite over a spe-

cific geographical location on Earth within a specific time, and in an unwarned man-

ner [1]. Co et al investigate the use of both impulsive thrust, chemical propulsion

(CP), and low thrust, electric propulsion (EP), systems to maneuver a spacecraft

in Low-Earth Orbit (LEO) and achieve operational responsiveness by changing its

ground track [3]. They analyze the maneuvers by comparing the ground track of the

maneuvering spacecraft to the ground track of a non-maneuvering reference space-

craft with the same initial conditions. The metric they used to quantify the effects

of the maneuvers was the terrestrial distance between the maneuvering and reference

spacecraft [3]. Their work demonstrated that Newberry’s concept of operational re-

1

sponsiveness is indeed achievable, but they did not address the possibility of arriving

on target in an unwarned manner.

The Joint Space Operations Center (JSpOC), under US Strategic Command,

has the responsibility of detecting, tracking, and identifying all man-made objects in

Earth orbit. The JSpOC tracks more than 22,000 objects and updates their positions

in order to keep the Space Catalog current [4]. With that many objects being tracked

it is conceivable that a spacecraft could change its orbit just enough to be confused

with a different object, especially if the spacecraft maneuver is not detected. Large

thrust, impulsive maneuvers, are relatively easy to detect. However, maneuvers using

small accelerations can be hard to discriminate from other natural perturbations [5].

The maneuver detection and orbit estimation problem for a low-thrust maneuvering

spacecraft is an active research topic, and is not in the scope of this thesis. Neverthe-

less, it is important to have a basic understanding of orbit determination in order to

understand how a spacecraft’s orbit estimate can become degraded.

The objective of orbit determination is to estimate current and future states

of an orbiting spacecraft subject to non-deterministic dynamics. The full-scope orbit

determination problem would include using estimation theory to compute covariance

ellipsoids at beginning and final times. Estimation theory provides many different

methods that can be used in orbit determination the earliest of which is the Least

Squares method discovered by Gauss, which assumes that the dynamics of the system

are deterministic [6]. Orbit determination methods that include stochastic dynamical

systems were later developed and resulted in the invention of the Kalman filter and the

Bayes filter [6]. Many variations to the Kalman filter also exist such as the Extended

Kalman filter, Unscented Kalman filter, and Backwards Smoothing Kalman filter [7].

The list of existing estimation algorithms is endless, and modern estimation techniques

are still popular research topics.

Most current research in the topic of orbit determination is motivated by the

need to increase situational awareness in space. Concerns such as detecting large

2

and small maneuvers, and providing better estimates are addressed. The goal of this

research, however, is to provide responsive flexible collection based on user taskings. In

his thesis, Payte compared the performance of current space surveillance capabilities

to the proposed Space Fence system [8]. He used Monte-Carlo methods to incorporate

inherent radar observation errors, and propagated the orbit from an initial acquisition

time to the re-acquisition time. His simulation showed that the most significant factor

in degrading the reconstruction of the spacecraft’s orbit is the time between initial

acquisitions. A smaller amount of time between initial acquisitions resulted in a more

uncertain orbit estimate. It then follows that if a spacecraft performed a maneuver to

change its arrival time over a particular location, therefore reducing the re-acquisition

time, flexible collection could be achievable.

The research discussed in this thesis somewhat parallels the work done by Co

et al in [3] but time is used as a metric instead of terrestrial distance. Although

both CP and EP systems could be used to perform these maneuvers, EP systems are

appealing due to their high efficiency and lower weight [2]. The small thrust output

by an EP system perturbs the spacecraft’s orbit slowly and maneuver durations will

be longer. These perturbations, however, could be a key factor in responsive flexible

collection. Therefore, only maneuvers using EP systems are considered throughout

this research. EP has been used extensively in space and the technology is well

developed. Current systems in space use EP for high-precision station-keeping or orbit

maintenance maneuvers. The tradition of using CP for larger maneuvers has slowed

the realization of the advantage of EP systems, but the potential is undoubtedly

present [9]. In the context of Newberry’s concept, EP could be used to perform

in-plane and out-of-plane maneuvers to change the spacecraft’s arrival time over a

specified target.

1.1 Problem Statement

The objective of this research is to develop an algorithm that produces a trajec-

tory for responsive spacecraft. The computed trajectory is compared to a reference,

3

non-maneuvering, trajectory and the time difference, ∆t, at a specified location within

the orbit is used as the metric to quantify the effects of the maneuver. The study is

divided into three phases - maneuvers using optimal control techniques, maneuvers

using feedback control techniques, and scenario simulations.

1.1.1 Phase One: Optimal Control Methods for Responsive Maneuvers. This

phase focuses on methods for performing minimum time in-plane maneuvers. The

optimal control problem for an orbiting spacecraft perturbed by a small, constant

acceleration is formulated using Euler-Lagrange theory, and solved numerically via

pseudospectral methods. The magnitude of the acceleration is assumed constant,

while its direction is treated as the control variable. With a constant acceleration,

and no throttling, the mass flow rate of the propulsion system will be constant,

therefore minimizing the duration of the maneuver will also minimize the amount

of fuel used [10]. Optimal acceleration profiles for the in-plane plane problem are

presented and discussed.

1.1.2 Phase Two: Feedback Control Methods for Responsive Maneuvers.

This phase focuses on feedback control methods for performing in-plane maneuvers.

Lyapunov theory is applied to the nonlinear equations of motion for an orbiting space-

craft perturbed by a small, constant acceleration. Results for the in-plane problem

are compared to the optimal acceleration profiles computed in Phase One, and out-

of-plane maneuvering capability is discussed and demonstrated. The implementation

of a thrust-coast duty cycle is demonstrated to provide flexibility in applying the

algorithm to several types of spacecraft that may not have the ability of thrusting

continuously.

1.1.3 Phase Three: Scenario Simulation. The last phase of this research is

a scenario simulation using the algorithms developed throughout this research. The

scenario involves providing the spacecraft a certain amount of time to complete an

in-plane maneuver that creates a specified amount of ∆t.

4

1.2 Thesis Outline

Chapter II provides background information applicable to this research, start-

ing by describing the equations of motion for a spacecraft experiencing a small, finite,

constant acceleration. A brief background of optimal spacecraft maneuvers is pre-

sented, including the derivation of the Euler-Lagrange equations, followed by a brief

background of Lyapunov Theory. Chapter III provides a detailed explanation of the

models and methods that were used. Chapter IV presents the results of this research.

Finally, Chapter V is a summary of the conclusions made throughout the research,

and provides recommendation for future work.

5

II. Background

2.1 Equations of Motion

The equations of motion for a spacecraft under constant low-thrust can be

written from Newton’s second law. There are a number of different variables that can

be used to express the motion of the spacecraft such as inertial position and velocity,

classical orbital elements, and equinoctial elements. These methods are detailed in

the following sections.

2.1.1 Inertial Position and Velocity. Using an inertially fixed, right-handed

coordinate system is one the easiest ways to express the spacecraft’s motion. A

common reference frame of choice is the Earth-Centered-Inertial (ECI) frame. The

three unit vectors that make up the ECI frame are [̂i, ĵ, k̂] and they are oriented such

that î points towards the vernal equinox, k̂ points to the north pole, and ĵ completes

the right-handed set. Figure 2.1 is a depiction of the spacecraft with respect to the

ECI frame, where r is the inertial position vector comprised of three components

[x, y, z], v is the inertial velocity vector comprised of three components [vx, vy, vz],

and A is the disturbance acceleration vector expessed in the ECI frame. Based on

Newton’s Law of Gravitation, the force due to gravity acting on the spacecraft is [11]:

F g = −Gmem

r3
r (2.1)

where G is the universal gravitational constant, me is the mass of the Earth, and

m is the mass of the spacecraft. The force in equation 2.1 results in an acceleration

due to gravity, referred to as the basic two-body acceleration [11]. Therefore, without

the disturbance acceleration, A, acting on the spacecraft, and with the fundamental

assumption that me >> m, the problem would reduce to the basic two-body equation

of motion:

r̈ = − µ
r3

r (2.2)

6

Figure 2.1: Earth Centered Inertial Reference Frame

where µ ≈ Gme is the gravitational constant for Earth. With the disturbance accel-

eration present, the equation of motion simply becomes:

r̈ = − µ
r3

r + A (2.3)

The disturbance acceleration vector can be written as a function of an acceleration

magnitude, and two angles, θ and β, that define the direction of the vector. The angle

θ is measured from the î unit vector and lies on the î-ĵ plane, and β measures the

angle between the acceleration vector and the î-ĵ plane. The acceleration magnitude

of the vehicle is a function of the constant thrust magnitude, T , the initial mass, m0,

and the mass flow rate of propellant, ṁ [10]:

A =
T

m0 + ṁt
(2.4)

7

Assuming that the change in mass of the vehicle in negligible (ṁ = 0), the acceleration

magnitude is a constant. Thorne used the same formulation which results in the

following equations of motion [10]:

ẋ = vx (2.5)

ẏ = vy (2.6)

ż = vz (2.7)

v̇x = − µ
r3
x+ A cos β cos θ (2.8)

v̇y = − µ
r3
y + A cos β sin θ (2.9)

v̇z = − µ
r3
z + A sin β (2.10)

where r =
√
x2 + y2 + z2. The six differential equations, 2.5-2.10 describe the three-

dimensional motion of the spacecraft in cartesian coordiantes. Thorne simplified the

problem to two dimensions by aligning the î-ĵ plane with the orbital plane, making k̂

parallel to the orbit angular momentum vector. He also set β = 0 and z = 0 to set up

the equations for coplanar maneuvers [10]. The six equations reduce to four coplanar

equations of motion:

ẋ = vx (2.11)

ẏ = vy (2.12)

v̇x = − µ
r3
x+ A cos θ (2.13)

v̇y = − µ
r3
y + A sin θ (2.14)

The coplanar equations of motion, equations 2.11-2.14, can also be expressed

in polar coordinates. The position vector only has one component, r, in the radial

direction, the velocity vector has two components, vr in the radial direction, and vs

in the transverse direction. The control angle, φ, can be used to define the thrust

angle and is measured from the velocity vector to the acceleration vector. The polar

8

equations of motion can be written [11]:

ṙ = vr (2.15)

v̇r =
v2s
r
− µ

r2
+ A sinφ (2.16)

v̇s = −vrvs
r

+ A cosφ (2.17)

Optimal control methods can be used with any of the above representations of

the spacecraft dynamics to determine an optimal acceleration profile. The simplistic

form of these dynamic equations is useful when attempting to come up with analytical

solutions, but can cause problems when using numerical methods as described in

section 2.2.2. Numerical solvers tend to be more effective when the state variables

change slowly. In the cartesian formulation, the inertial position and velocity of the

spacecraft changes drastically over small periods of time. Rapid changes in the state

variables can cause numerical solvers to be ineffective especially when considering

maneuvers over long periods of time. [12] The polar formulation, however, includes

variables that change slowly as long as the acceleration magnitude remains small.

Classical perturbation theory provides a means for developing differential equa-

tions that describe the dynamic behavior of the orbital elements over time. Since

the applied acceleration is very small the effect will be an osculating orbit where

five of the six orbital elements change slowly with time. The sixth element, defining

the spacecraft’s position within the orbit, changes rapidly but can be predicted by

the mean motion of the osculating orbit. Therefore, perturbation equations can be

very effective in solving optimal control problems, especially when using numerical

methods.

2.1.2 Classical Orbital Elements. In deriving the differential equations that

describe the behavior of the orbital elements over time, Wiesel used a method re-

ferred to as the variation of paramenters (VOP) [13]. Using the known relationships

between the six classical orbital elements (COEs), (a, e, i,Ω, ω, ν), and the position

9

and velocity vectors, the cartesian coordinate componets in equation 2.3 can be re-

placed with the COEs. The COEs define the orbit’s semi-major axis, eccentricity,

inclination, right ascension of the ascending node (RAAN), argument of perigee, and

true anomaly respectively. If only the two-body acceleration is considered the COEs

will be constant. With a perturbing acceleration present any change in the COEs

will be due to that force alone. A new rotating coordinate frame is introduced, often

referred to as the local-vertical-local-horizontal (LVLH) frame, whose basis is defined

by the three unit vectors [̂ir, îθ, îh]. The LVLH frame is attached to the spacecraft and

is oriented such that îr points along the direction of the radius vector, îh points along

the direction of the orbit’s angular momentum vector, and îθ completes the right-

handed set. It is important to note that for circular orbits îθ is always aligned with

the spacecraft’s velocity vector, while for elliptic orbits îθ is aligned with the velocity

vector only at perigee and apogee. Figure 2.2 shows a depiction of the COEs [14]

with respect to the inertial frame and the LVLH frame attached to the spacecraft.

Figure 2.2: Classical Orbital Elements and Local-Vertical-Local-Horizontal Frame

10

A state vector containing the six COEs is defined, e = [a, e, i,Ω, ω, ν]T . Since

the COEs can be written in terms of the instanteneous position and velocity vectors,

the new state vector e can be written as a function of position and velocity. The rate

of change of e can then be written by the chain rule using the equations of motion

ṙ = v and v̇ = − µ
r3

r + A [13]:

de(r , v)

dt
=
∂e

∂r
· v +

∂e

∂v
·
(
− µ
r3

r + A
)

=
∂e

∂v
·A (2.18)

Equation 2.18 shows that the time rate of change of the COEs due to the two-body

acceleration is zero and only the perturbing acceleration contributes to the change,

while not accounting for the change in ν due to the mean motion. The perturbing

acceleration and the spacecraft’s velocity can be written in the LVLH frame:

A = ar îr + aθ îθ + ahîh (2.19)

v = ṙîr + rν̇îθ (2.20)

The equation for the specific mechanical energy of the orbit is defined by [13]:

ε =
1

2
v · v − µ

r
(2.21)

Taking the time derivative of equation 2.21 and substituting v̇ = A, so that the only

change is attributed to the perturbing acceleration, yields:

dε

dt
= v ·A (2.22)

The semi-major axis of the orbit is a = −µ/2ε and its time derivative is:

da

dt
=

2a2

µ

dε

dt
=

2a2

µ
(ṙar + rν̇aθ) (2.23)

11

The following two-body results can then be substituted into equation 2.23:

dr

dν
=

re sin ν

1 + e cos ν
(2.24)

dν

dt
=
na2

r2

√
1− e2 (2.25)

ṙ =
dr

dν
ν̇ (2.26)

where n =
√
µ/a3 defines the mean motion of the orbit. The combined result yields

the first of six Gauss’ Variational Equations, also known as the acceleration form of

the Lagrange Planetary Equations (LPEs):

da

dt
=

2e sin ν

n
√

1− e2
ar +

2a
√

1− e2
nr

aθ (2.27)

In a similar manner, the differential equations for the other five COEs can be

derived as shown by Wiesel [13]. The final LPEs are shown here using slightly different

notation, but derived in the same manner by Schaub and Junkins [15].

da

dt
=

2a2

h
(e sin νar +

p

r
aθ) (2.28)

de

dt
=

1

h
(p sin νar + ((p+ r) cos ν + re)aθ) (2.29)

di

dt
=
r cos(ω + ν)

h
ah (2.30)

dΩ

dt
=
r sin(ω + ν)

h sin i
ah (2.31)

dω

dt
=

1

he
(−p cos νar + (p+ r) sin νaθ)−

r sin(ω + ν) cos i

h sin i
ah (2.32)

dν

dt
=

h

r2
+

1

he
(p cos νar − (p+ r) sin νaθ) (2.33)

where h =
√
µp is the orbit angular momentum, and p = a(1 − e2) is the semi-latus

rectum.

Equations 2.28-2.33 represent another set of first-order differential equations

that can be used in an optimization problem. These equations are more complicated

12

than equations 2.5-2.10 but can be a powerful tool for numerical methods since they

change slowly with time. One of the disadvantages of these equations is that they

are obviously singular for circular orbits (e = 0) and equitorial orbits (i = 0). These

equations could still provide useful results as long as the singularities are avoided

throughout the trajectory. However, if the singularities are unavoidable equinoctial

orbital elements could be used.

2.1.3 Equinoctial Elements. Equinoctial elements offer the same advantages

as COEs while avoiding the singularities that appear in the LPEs. Since the rela-

tionships between the COEs and equinoctial elements are known, a transformation

of variables could be applied to derive the rate of change of the equinoctial elements

due to the perturbing acceleration. One of the most popular articles on the subject of

equinoctial elements is by Broucke and Cefola [16]. They developed the Lagrange and

Poisson brackets in terms of the equinoctial elements for applications in perturbation

analysis. Their work has been applied to optimal transfers by many authors, however

the discussion below is taken from Kechichian [17] and Chobotov [18].

First, the equinoctial reference frame comprised of unit vectors [f̂ , ĝ, ŵ] is intro-

duced. The equinoctial frame is oriented such that f̂ and ĝ span the orbital plane,

and ŵ is aligned with the orbit angular momentum vector. Figure 2.3 [17] shows the

orientation of the equinoctial frame with respect to the ECI frame. The equinoctial

frame and the ECI frame can be related by three rotations through the angles Ω,

−i, and −Ω. The resulting rotation matrix shown in equation 2.34 can be used to

transform between the two frames. [18]


î

ĵ

k̂

 =


cos2 Ω + cos i sin2 Ω cos Ω sin Ω− sin Ω cos i cos Ω sin Ω sin i

sin Ω cos Ω− sin Ω cos Ω cos i sin2 Ω + cos i cos2 Ω − cos Ω sin i

− sin Ω sin i sin i cos Ω cos i



f̂

ĝ

ŵ


(2.34)

Based on the transformation in equation 2.34 and after some algebraic manipulation

the f̂ , ĝ, and ŵ unit vectors can be expressed in the ECI frame as functions of the

13

Figure 2.3: Equinoctial Frame with respect to ECI Frame [17]

equinoctial elements p and q. [18]

f̂ =
1

1 + p2 + q2


1− p2 + q2

2pq

−2p

 (2.35)

ĝ =
1

1 + p2 + q2


2pq

1 + p2 − q2

2q

 (2.36)

ŵ =
1

1 + p2 + q2


2p

−2q

1− p2 − q2

 (2.37)

14

The equinoctal element set, like the COEs, is comprised of six elements. The

first element is the semimajor axis and is the same as the semi-major axis in the

COEs. The elements h and k define the eccentricity vector components in the f̂ and

ĝ directions, the elements p and q are a function of the inclination and the RAAN,

and λ is the mean longitude. The equinoctial elements can be written in terms of the

COEs [18]:

a = a (2.38)

h = e sin(ω + Ω) (2.39)

k = e cos(ω + Ω) (2.40)

p = tan

(
i

2

)
sin Ω (2.41)

q = tan

(
i

2

)
cos Ω (2.42)

λ = M + ω + Ω (2.43)

The mean longitude can be replaced by F , the eccentric longitude, or L, the true

longitude, through Kepler’s equation.

F = E + ω + Ω (2.44)

L = ν + ω + Ω (2.45)

15

The inverse transformation is given by [18]:

a = a (2.46)

e =
√
h2 + k2 (2.47)

i = 2 tan−1
√
p2 + q2 (2.48)

Ω = tan−1
(
p

q

)
(2.49)

ω = tan−1
(
h

k

)
− tan−1

(
p

q

)
(2.50)

M = λ− tan−1
(
h

k

)
(2.51)

E = F − tan−1
(
h

k

)
(2.52)

ν = L− tan−1
(
h

k

)
(2.53)

Kepler’s equation in terms of equinoctial elements is derived directly from the classical

Kepler equation (2.54) using the definitions of λ, F , h, and k [18].

M = E − e sinE (2.54)

λ = F − k sinF + h cosF (2.55)

The position and velocity vectors in the equinoctial frame can be written by

introducing the variables X1 and Y1 such that [17,18]:

r = X1f̂ + Y1ĝ (2.56)

ṙ = Ẋ1f̂ + Ẏ1ĝ (2.57)

16

The components of the position and velocity vectors are defined in terms of the

equinoctial elements [17, 18]:

X1 = a[(1− h2β) cosF + hkβ sinF − k] (2.58)

Y1 = a[hkβ cosF + (1− k2β) sinF − h] (2.59)

Ẋ1 =
a2n

r
[hkβ cosF − (1− h2β) sinF] (2.60)

Ẏ1 =
a2n

r
[(1− k2β) cosF − hkβ sinF] (2.61)

where n =
√
µ/a3 is the mean motion, and r = a(1 − k cosF − h sinF) is the orbit

radius. Equations 2.58-2.61 introduce the parameter β, which is defined by:

β =
1

1 +
√

1− h2 − k2
(2.62)

A state vector containing the six equinoctial elements is defined, z = [a, h, k, p, q, λ]T .

The rate of change of the equinoctial elements can be written in the same manner

that the rate of change of the COEs was written in equation 2.18:

dz

dt
=
∂z

∂r
· v +

∂z

∂v
·
(
− µ
r3

r + A
)

=
∂z

∂v
·A (2.63)

where A is the acceleration vector expressed in the equinoctial frame. The partial

derivatives of the equinoctial elements with respect to velocity are needed in order to

obtain the LPEs in terms of the equinoctial elements. The partial derivatives can be

obtained through the Poisson brackets (aα, aβ) of equinoctial elements [18]:

∂aa
∂v

= −
6∑

β=1

(aα, aβ)
∂r

∂aβ
(2.64)

where aα and aβ are equinoctial elements from the state vector z . Deriving the

Poisson brackets is not an easy task. Broucke and Cefola [16] derived a transformation

equation that can be used to find the Poisson brackets of equinoctial elements in terms

17

of the Poisson brackets of COEs:

[(pα, pβ)] =

(
∂pα
∂aλ

)
[(aλ, aµ)]

(
∂pβ
∂aµ

)T
(2.65)

where [(pα, pβ)] is the six by six matrix of Poisson brackets in terms of the equinoctial

elements, [(aλ, aµ)] is the six by six matrix of Poisson brackets in terms of COEs,

and the partial derivative terms on the ends are six by six matrices representing the

partial derivatives of the equinoctial elements with respect to COEs. With the Poisson

brackets at hand, the partials of the equinoctial elements with respect to velocity can

be written. This derivation is quite extensive and is included in Appendix A. In

the simplest form, however, the LPEs in terms of the equinoctial elements are given

by [18]:

da

dt
=

(
∂a

∂ṙ

)T
·A = M11af +M12ag +M13aw (2.66)

dh

dt
=

(
∂h

∂ṙ

)T
·A = M21af +M22ag +M23aw (2.67)

dk

dt
=

(
∂k

∂ṙ

)T
·A = M31af +M32ag +M33aw (2.68)

dp

dt
=

(
∂p

∂ṙ

)T
·A = M41af +M42ag +M43aw (2.69)

dq

dt
=

(
∂q

∂ṙ

)T
·A = M51af +M52ag +M53aw (2.70)

dλ

dt
= n+

(
∂λ

∂ṙ

)T
·A = n+M61af +M62ag +M63aw (2.71)

where the Mxx coefficients are elements of the six by three matrix, M , defined in

Appendix A and af , ag, aw, are the acceleration components in the f̂ , ĝ and ŵ

directions respectively.

As with all the other sets of equations derived in the previous sections, equations

2.66 - 2.71 could be used to optimize a spacecraft trajectory. The main disadvantage

of this set of equations is that it is hard to visualize the orbit in terms of equinoctial

18

elements. Once a solution is obtained it may be easier to convert back to COEs in

order to get a better understanding of the solution. Despite the slight disadvantage,

and the burdensome derivation, the equinoctial elements offer a singularity-free set of

equations which could be extremely important when using numerical methods.

2.2 Optimal Control Methods

The subject of optimal spacecraft maneuvers has been studied extensively in the

past. Optimal Control Theory has been applied to a variety of spacecraft trajectory

problems in order to solve both minimum-time and minimum-fuel problems. A brief

overview of Optimal Control Theory and examples of its applications to spacecraft

trajectories are provided here.

2.2.1 Optimal Control Theory. The objective of an optimal control problem

is to determine a history of control inputs that minimizes a specified cost functional,

or performance measure, while satisfying physical constraints applicable to the sys-

tem. The calculus of variations provides analytical methods of obtaining solutions to

optimal control problems, and has been used in the past by legendary scientists and

mathematicians such as Newton, Bernoulli, and L’Hopital. [19] The following overview

is taken from derivations presented by Kirk [19] and Bryson [20], supplemented by

course notes provided by Dr. Jacques [21].

The physical constraints on the system can be written as a set of first-order

differential eqiations:

ẋ = f (x ,u , t) (2.72)

where x is the n-dimensional state vector and u is the m-dimensional control vector.

The initial conditions of the state vector are usually specified (x (t0) = x 0). Terminal

constraints on the state vector are applied using the function:

ψ(x (tf), tf) = 0 (2.73)

19

The quantity to be minimized, or the cost functional, for a general optimization

problem is:

J = φ(x (tf), tf) +

∫ tf

t0

L(x ,u , t)dt (2.74)

The cost functional, J , is comprised of two scalar functions. The scalar function φ

defines the cost associated with the terminal conditions, and is referred to as the

Mayer cost. The scalar function L defines the cost associated with the values of x

and u throughout the trajectory, and is referred to as the Lagrange cost. When J

contains both a Mayer piece and a Lagrange piece it is referred to as a Bolza cost.

The system Hamiltonian is defined as:

H ≡ L(x ,u , t) + λT f (2.75)

where λ is the n-dimensional vector of Lagrange multipliers, or costates. The optimal

solution will be the control history, u∗, that produces the optimal trajectory, x ∗,

minimizing the cost functional, J .

In order to include the dynamic constraints and terminal constraints in the cost

functional an augmented cost functional is formulated by adjoining equation 2.72 with

Lagrange multipliers, λ, and equation 2.73 with Lagrange multipliers, ν:

Ja = φ(x (tf), tf) + νTψ(x (tf), tf) +

∫ tf

t0

(L(x ,u , t) + λT (f − ẋ))dt (2.76)

Note that the quantity (f − ẋ) is identically equal to zero when the dynamics are

satisfied, and the quantity ψ is zero when the terminal constraints are satisfied. There-

fore, adding these terms does not change the value of the cost functional. To simplify

notation a new function, Φ(x (tf), tf) ≡ φ(x (tf), tf) + νTψ(x (tf), tf), is introduced.

A closer look at the integrand in equation 2.76 reveals that there are two separate

terms, one of which is the Hamiltonian. The other term, λT ẋ , can be integrated by

20

parts. The augmented cost functional then becomes:

Ja = Φ(x (tf), tf)− λT (tf)x (tf) + λT (t0)x (t0) +

∫ tf

t0

(H(x ,u ,λ, t) + λ̇
T
x)dt (2.77)

The fundamental theorem of the calculus of variations states that in order for x ∗ to

be a minimum or maximum the variation in the cost functional, Ja , must be equal to

zero. Taking the variation of Ja without considering variations in the initial conditions

(δx (t0) = 0) yields:

δJa =(Φx(x (tf), tf)− λT (tf))δx (tf) + (Φ̇(x (tf), tf) + L(x (tf),u(tf), tf))δtf

+

∫ tf

t0

((Hx + λ̇
T

)δx +Huδu)dt
(2.78)

where the subscripts on the variables denote partial derivatives. In order for δJa to

be equal to zero all three terms must be equal to zero for any admissible δx , δu , and

δtf . Setting the first term in equation 2.78 equal to zero yields a final condition on

the Lagrange multipliers, λ:

λT (tf) =
∂Φ

∂xtf
=

∂φ

∂xtf
+ νT

∂ψ

∂xtf
(2.79)

The second term yields the transversality condition:

Φ̇(x (tf), tf) + L(x (tf),u(tf), tf) = 0 (2.80)

In order for the integral term in equation 2.78 to be equal to zero, the integrand

itself must be zero. This yields a first order differential equation for the Lagrange

multipliers, λ, and the optimality condition:

λ̇
T

= −∂H
∂x

(2.81)

0 =
∂H

∂u
(2.82)

21

Equations 2.81 and 2.82 along with the dynamic constraints, equation 2.72 are known

as the Euler-Lagrange (EL) equations, and they represent the first-order necessary

conditions for an extremum. The EL equations together with equations 2.73, 2.79,

and 2.80 constitute a two-point boundary-value problem (TPBVP) - where initial

and terminal conditions on the states are specified, but boundary conditions on the

Lagrange multipliers are unknown. For most realistic problems, solutions to the

TPBVP can only be found via numerical methods. [12] The main difficulty with

solving the TPBVP is that without knowledge of the initial conditions on the Lagrange

multipliers equation 2.81 cannot easily be solved. Numerical methods require an initial

guess for the solution, which is refined through an iterative process.

2.2.2 Numerical Methods for solving the TPBVP. Several methods exist to

solve the TPBVP numerically. The most popular numerical methods seek to discretize

the problem, reducing it to a parameter optimization problem, and minimizing the

cost functional directly. The method of collocation is one of the most implemented

methods of this type. Both the state and control histories are respresented by discrete

points on a mesh, and polynomial functions are used to represent histories between

mesh points. A collocation point is then picked at the center of each mesh segment,

and the slopes of the polynomials at the mesh points and collocation points are

constrained such that they match system dynamics. A nonlinear programming (NLP)

problem solver is used to enforce all constraints and minimize the cost functional. [12]

Another popular numerical method for solving the TPBVP is via pseudospectral

techniques. Although very similar to the collocation method, pseudospectral methods

match the state polynomial at a finite number of nodes. Using the values at the

nodes, and interpolating between nodes, a polynomial interpolation of the states is

constructed, and the state derivatives are computed. The physical state derivatives

are also computed through the system dynamics, and the two sets of derivatives are

compared. A NLP problem solver is again used to enforce constraints and minimize

the cost functional. [12]

22

2.2.3 Applications of Optimal Control. One of the first published works

on optimized spacecraft trajectories was Lawden’s Optimal Trajectories for Space

Navigation, published in 1963 [22]. Lawden solved the problem of optimal impulsive

maneuvers using calculus of variation methods. Lawden presented analytical solutions

of optimal thrust profiles for rocket trajectories and orbital transfer maneuvers. In his

formulation he treated the Lagrange multipliers as components of a “primer vector”

whose behavior indicated the optimal direction of an impulsive thrust. Although

Lawden did not consider low-thrust systems in solving the optimal control problem, his

work is considered the foundation of optimal space trajectories and is a fundamental

reference in a vast majority of the literature on this subject. [22]

Building on Lawden’s work, Jean-Pierre Marec’s book, Optimal Space Trajecto-

ries, was first published in France in 1973, followed by an English version in 1979 [23].

Marec’s book built on Lawden’s work by including the consideration of using low-

thrust propulsion systems. His book served as a comprehensive compilation of all

active research, at that time, regarding spacecraft trajectory optimization. His list of

references is endless and, as a result, he included a variety of trajectory optimization

problems. He started by providing a parametric optimization example using the pop-

ular Hohmann transfer in order to expose the shortcomings of parametric methods.

He then discussed the use of functional optimization methods, similar to methods

shown in Section 2.2.1, for optimal transfer problems using both impulsive thrust and

continuous low thrust. He discussed a variety of problems through functional opti-

mization methods including transfers in both simple and complex gravitational fields

and interplanetary rendezvous. Lastly, he introduced the use of celestial mechanics

and classical perturbation methods to formulate the optimal control problem in terms

of osculating orbital elements. Although Marec’s work dates back over 30 years, it

still offers a huge variety of applications of optimal control. [23]

Over the years optimal control methods have become more modernized and nu-

merical solutions have become the preferred choice over analytical solutions. However,

analytical solutions have been derived for specialized cases. Wiesel and Alfano ad-

23

dressed the minimum-time transfer between two circular orbits using very low thrust

[24, 25]. The main assumption they made that allowed for a closed form solution is

that the thrust magnitude is small enough that the orbit’s semi-major axis and ec-

centricity remain fairly constant for a single revolution. The problem was separated

into a fast timescale and a slow timescale problem. The fast timescale problem was

formulated to determine the small changes in the orbital elements over one revolu-

tion, while maximizing the inclination change for a specified semi-major axis change.

Solutions from the fast timescale problem were then used to solve the slow timescale

problem over multiple revolutions, while taking into account the vehicle’s change in

mass. [24, 25]

As mentioned in section 2.2.1, one of the most difficult parts of solving an opti-

mal control problem is providing an initial guess for the solution. In his dissertation,

Thorne formulated the minimum-time, continuous thrust orbit transfer problem, and

used the shooting method to solve the TPBVP [10]. The shooting method involves

numerically integrating the equations governing the dynamics of the spacecraft and

the Lagrange multipliers, which once again requires a guess for the initial conditions

on the Lagrange multipliers. Thorne presented a method for modeling the inital values

of the Lagrange multipliers. He first used numerical results from different scenarios

to determine the functional relationship between the Lagrange multipliers and two

different parameters - the radius of the final orbit and the constant acceleration acting

on the spacecraft. Using analytical and empirical methods he derived approximate ex-

pressions that define the initial Lagrange multipliers, and analyzed their convergence.

He then used these expressions as a reliable means of providing intial conditions on

the Lagrange multipliers for the minimum-time continuous thrust orbit transfer. [10]

Equinoctial elements, as derived in section 2.1.3, have also been used in the

past for spacecraft trajectory optimization. Jean Kechichian used the non-singular

set of elements to solve the optimal low-thrust rendezvous problem using continuous

constant acceleration [17]. After formulating the problem, Kechichian used numerical

24

methods to solve the TPBVP. The problem is posed as a minimum time problem,

and solved using a quasi-Newton minimization algorithm.

Rendezvous problems, similar to those in Kechichian’s article [17] are, in a

way, similar to the responsive maneuvers that are discussed in this thesis. The main

difference is that instead of the objective being to rendezvous with another spacecraft,

it is to “rendezvous” with a specific location within an orbit. Another example of a

rendezvous problem is provided by Hall and Collazo-Perez [26]. They formulated

the minimum-time coplanar phasing problem using Euler-Lagrange theory and used

a semi-analytic method to solve the TPBVP, similar to the methods presented by

Thorne [10]. The phasing maneuver problem solved by Hall and Collazo-Perez is a

special case of the rendezvous problem, where the target spacecraft is on the same

orbit as the maneuvering spacecraft, and only separated by a phase angle. For the

responsive maneuvers discussed in this thesis the target location on the orbit does

not necessarily need to be constrained to be on the same orbit as the maneuvering

spacecraft. Although much of the literature presented here may not directly relate to

the problem posed in this thesis, it provides useful insight in formulating the optimal

control problem for responsive maneuvers.

2.3 Feedback Control Methods

Although the methods discussed in the previous section provide the “best” so-

lutions to the trajectory control problems presented in this research, optimal control

methods have some disadvantages. The numerical methods used to find the optimal

solution can be computationally intensive, and sensitive to user-input initial guesses.

Solutions would also need to be recomputed periodically in real time in order to

correct for deviations from the optimal trajectory. The objective in using feedback

control methods is to find a solution that is close to the optimal solution, but less

computationally intensive and easier to implement. The main advantage of feedback

control methods is their responsiveness to disturbances in the trajectory that are

25

not modeled in the dynamics. The following sections provide a brief background on

Lyapunov Theory, taken from Ilgen [27], and some examples of its applications.

2.3.1 Lyapunov Theory. Lyapunov theory provides a means of developing

a control law that can be used to control the trajectory of a maneuvering spacecraft

subject to nonlinear dynamics. Ilgen considers a dynamical system of the form [27]:

ẋ = f (x ,u) (2.83)

where, as in section 2.2.1, x is the n-dimensional state vector and u is the m-

dimensional control vector. The stability of this dynamical system is considered about

an equilibrium point, x ∗. The vector function, z = x−x ∗ is defined. Lyapunov’s the-

orem states that there exists a scalar function, V (z), with continuous first derivatives,

that meets the following characteristics [27]:

1. V (z) is positive definite

2. V̇ (z) is negative definite

3. V (z)→∞ as |z | → ∞

The function V is then called a Lyapunov function and x ∗ is globally asymptotically

stable, guaranteeing that the equilibrium point will eventually be reached. Ilgen

continues by considering a Lyapunov optimal feedback control law, u∗, that makes V̇

as negative as possible, by minimizing the Lie derivative, LfV , therefore reaching the

equilibrium point as fast as possible. The Lie derivative is defined by [27]:

LfV =

(
∂V

∂x

)
f (2.84)

Ilgen points out that the Lyapunov optimal control law is not necessarily equivalent

to the true optimal control law that is computed through solving the TPBVP as

described in section 2.2.2. However, it is possible to derive a Lyapunov optimal

control law that is very close, if not equivalent, to the optimal control law.

26

2.3.2 Applications of Feedback Control. Ilgen applied the theory presented

in his paper to derive a guidance law for low-thrust orbit transfers between orbits of

different semi-major axis, eccentricity, and inclination. He presented formulations of

the guidance law in terms of both classical orbital elements and equinoctial elements,

using a Lyapunov function that measures the difference between the osculating orbital

elements and the target orbital elements. The guidance law determined the thrust

direction necessary to minimize the Lie derivative at every time step along the trajec-

tory. He then discussed the optimization of the guidance law by adjusting a number of

“free parameters”, which are essentially gains in the Lyapunov function. He demon-

strated the use of the guidance law by analyzing two scenarios, and compared them

to optimal results. [27]

Feedback control methods, such as those presented by Ilgen, have been studied

by several authors. In his thesis, Naasz studied the use of feedback control laws for

use in spacecraft maneuvers and formation flying. He presented formulations of a

Lyapunov-based feedback control law in terms of cartesian coordinates, classical or-

bital elements, and equinoctial elements, using Lyapunov functions similar to those

used by Ilgen. He also presented a way of controlling the position of the spacecraft

within the orbit through mean motion control. He applied the derived control laws

to demonstrate orbit raising maneuvers, inclination change maneuvers, phasing ma-

neuvers, and finally formation establishment and formation keeping maneuvers. [28]

Gurfil also used a Lyapunov function to derive a nonlinear feedback controller for

low-thrust orbital maneuvers. Although the control law derived was not different from

the control laws used by Ilgen and Naasz, Gurfil included a mathematical discussion on

the controllability of the equations of motion in terms of the classical orbital elements.

Gurfil’s discussion proves the asymptotic stability of the equilibrium point, as stated

by Ilgen. Gurfil demonstrated the performance of the low-thrust nonlinear control

law by performing an orbital transfer between geosynchronous orbits, and compared

the results to an impulsive maneuver. He concluded that the low-thrust control law

was more fuel efficient than an impulsive maneuver for the same orbit transfer. [29]

27

Another popular article on the topic of nonlinear feedback control is by Petropou-

los, who used a Lyapunov function termed the “proximity quotient”, or Q-law. As the

Lyapunov functions used by Ilgen and Naasz, his Lyapunov function quantifies the

proximity of the osculating orbit to the target orbit. Petropoulos, however, included

a method in his algorithm that would allow the spacecraft to coast if the effectivity,

defined by the rate of change of the Q-law, of the thrust is below some threshold

value. He applied his algorithm to demonstrate four different example orbit transfers,

showing a wide range of capability. [30]

One of the subjects that Ilgen mentioned was the relationship between the

Lyapunov control law and the true optimal control law. In his article, Yang presents

both control laws and it can be seen that the Lagrange multipliers, or costates, in the

optimal control law are related to the partial derivatives of the Lyapunov function in

the Lyapunov control law. Yang demonstrated that using the Lyapunov controller to

produce an initial guess for the optimization problem improved the convergence and

robustness of the numerical methods he used to solve for the optimal control law. [31]

Yang’s conclusions validate Ilgen’s statement that the Lyapunov control law is very

close, if not equivalent, to the optimal control law.

Other control methods have also been used for maneuvers that have similar ob-

jectives to those discussed in this thesis. Jean and de Lafontaine presented guidance

algorithms, in cubic spline and quatric form, for an autonomous Earth observation

satellite using low thrust [32]. The cubic spline control law presented in their paper

was initally presented by Guelman and Kogan, who also showed that its performance

was optimal [33]. Both papers discussed maneuvers that placed a satellite over a

particular terrestrial target, but their methods were specific to the problems being

examined. Guelman and Kogan investigated the use of low thrust propulsion to ma-

neuver a spacecraft such that it overflew a series of ground targets over a specified

time period [33]. They showed that the applied cubic spline control law produced a

fuel-optimal solution, and that the application of electric propulsion was practical [33].

Jean and de Lafontaine applied the same cubic spline law to an Earth observation

28

satellite, with the objective of overflying a given terrestrial target while maintaining

a sun-synchronous orbit [32]. They extended Guelman and Kogan’s research by ac-

counting for perturbations due to air drag and Earth oblateness, and by investigating

the use of a quartic guidance law [32]. The methods discussed in these two papers

could be applied to the algorithms developed in this research in order to solve the full

target overflight problem.

Overall, feedback control methods could have a significant advantage over op-

timal control methods. Since feedback control methods can produce optimal results,

the simplicity of implementing feedback control makes them more appealing than op-

timal control methods. The literature presented above shows that feedback control

methods have a broad range of applications, and, as such, provide flexibility in ca-

pabilities that could be implemented. As will be discussed in Chapters III and IV,

both algorithms are developed, and the feedback control algorithm tends to be more

user-friendly.

2.4 Summary

Chapter II presented the necessary background information in order to fully un-

derstand the problem posed in this research. The equations of motion for a low-thrust

maneuvering spacecraft were presented in cartesian coordinates, classical orbital ele-

ments, and equinoctial elements. The optimal control methods and feedback control

methods that are being considered in this research were briefly described, and exam-

ples of their applications were presented. The following chapter discusses how the

above methods can be applied to the specific problem at hand.

29

III. Model Development and Methodology

The following sections present the methodology in setting up models for computing

maneuver trajectories using optimal control methods and feedback control methods.

Chapter II presented a variety of variables that can be used to define the equa-

tions of motion (EOM). The classical orbital elements (COEs) were selected for these

particular models due to their slowly-changing behavior, and intuitiveness in orbit

visualization. For the maneuvers discussed throughout this research, the spacecraft

begins at a circular, or near-circular, orbit and all of the intial COEs are known. The

code associated with these algorithms is provided in Appendices B - D.

3.1 Optimal Control Formulation

The minimum-time transfer problem for a low-thrust maneuvering spacecraft is

formulated using Euler-Lagrange theory as described in section 2.2.1. The first-order

differential equations defining the physical constraints on the system are the EOM in

terms of the COEs as shown in equations 2.28-2.33. As was discussed in Chapter II

these equations are singular for orbits of zero eccentricity. The singularity immediately

causes a problem since the spacecraft starts on a circular orbit, and a work-around

must be implemented before continuing. The assumption can be made that the orbit

remains circular throughout the trajectory. Since the amount of thrust considered

for the maneuvers is very small, it is expected that the change in eccentricity will be

very small. Therefore, the assumption that the orbit remains fairly circular is safe.

However, in order to fully declare the validity of the assumption the solution must be

checked to verify that the eccentricity remains close to zero throughout the trajectory.

Setting e = 0 simplifies some of the terms in equations 2.28 and 2.29, and since

the eccentricity throughout the trajectory is assumed to be zero, equation 2.29 can

be ignored completely. Equations 2.32 and 2.33, that have e in the denominator,

define the rate of change for the argument of perigee and true anomaly, respectively.

The argument of perigee(ω) is measured from the orbit’s eccentricity vector and,

since the orbit’s eccentricity is zero, it is undefined. As a result, equation 2.32 can

30

be ignored. The true anomaly(ν) is measured from perigee and is therefore also

undefined. The position of a spacecraft within a circular orbit is measured by the

argument of latitude, which is referred to as ν throughout this thesis, and its rate of

change can be approximated by the mean motion of the osculating orbit. The EOM

then simplifies to:

da

dt
=

2

n
aθ (3.1)

di

dt
=

cos ν

na
ah (3.2)

dΩ

dt
=

sin ν

na sin i
ah (3.3)

dν

dt
= n (3.4)

where n =
√
µ/a3 is the mean motion of the osculating orbit.

The acceleration vector for this set of equations is defined in the Local-Vertical-

Local Horizontal (LVLH) frame as shown in equation 2.19. The orientation of the

acceleration can be defined by two control angles, θ and β. As shown in Figure 3.1,

the angle θ is the in-plane angle and is measured from the îr unit vector, and β is the

out-of-plane angle. The acceleration components (ar, aθ, ah) can then be written as

functions of the constant acceleration magnitude and the control angles θ and β:

ar = A cos β cos θ (3.5)

aθ = A cos β sin θ (3.6)

ah = A sin β (3.7)

Equations 3.5-3.7 can then be substituted into the EOM so that the physical con-

straints are functions of the classical orbital elements and the control angles.

The problem can be further simplified by only considering coplanar maneuvers

(β = 0). Equations 3.2 and 3.3 then vanish and the EOM only consists of one equation

31

Figure 3.1: Acceleration vector in LVLH frame

for a and one equation for ν:

da

dt
=

2
√
µ
a3/2A sin θ (3.8)

dν

dt
=

√
µ

a3
(3.9)

The initial conditions on the states, a0 and ν0, are known. The final conditions for

semi-major axis, af , could be defined if the final altitude of the spacecraft needs to

be constrained. The final condition for the argument of latitude, νf , is defined and is

the final position within the orbit that the spacecraft is required to reach.

3.1.1 The Cost Functional. The simplest form of the cost functional for the

minimum-time transfer problem is the Mayer form, which can be written as:

J = tf (3.10)

32

However, since numerical methods will be used to find a solution, a Lagrange cost term

should be added to the cost functional. The purpose of the additional term is to avoid

discontinuities in the optimal control solution that could result in convergence issues

for the nonlinear programming (NLP) solver. The cost functional then becomes:

J = tf +

∫ tf

t0

αθ2dt (3.11)

where θ is the control angle, and α is a weight factor. The added Lagrange cost term

actually penalizes control usage and if it is allowed to be too large the spacecraft will

exhibit very slow changes in the control angle, which would be undesirable. Therefore,

the value of α should be set as close to zero as possible, while still allowing the NLP

solver to converge to a solution. With α being very small the final Lagrange cost will

be negligible and the cost functional is mostly dependent on the value of the final

time(tf), which is being minimized.

3.1.2 The Euler-Lagrange Equations. Based on the cost functional in equa-

tion 3.11 the Hamiltonian can be written using equation 2.75:

H = αθ2 + λ1

(
2
√
µ
a3/2A sin θ

)
+ λ2

(√
µ

a3

)
(3.12)

The Euler-Lagrange(EL) equations can then be written using equations 2.81 and 2.82:

λ̇1 = −∂H
∂a

= −λ1
(

3
√
µ
a1/2A sin θ

)
+ λ2

(
3

2

√
µ

a5

)
(3.13)

λ̇2 = −∂H
∂ν

= 0 (3.14)

0 =
∂H

∂θ
= 2αθ + λ1

(
2
√
µ
a3/2A cos θ

)
(3.15)

From the EL equations it can be easily seen that the second Lagrange multiplier, λ2,

is constant. Without any boundary conditions on λ1, however, the equations cannot

be integrated to obtain a solution. Therefore, the problem is solved numerically using

pseudospectral methods.

33

3.1.3 Algorithm Setup. The problem is fomulated as a single phase problem.

The algorithm includes a sparse nonlinear optimal (SNOPT) solver that is used to

solve the problem directly [34]. Given an initial guess for the control and the states,

the algorithm discretizes the problem using gauss pseudospectral methods and verifies

optimality conditions at each iteration step until a solution is obtained within desired

tolerances. The most challenging part is generating an initial guess. To obtain a

refined optimal control solution the algorithm runs twice for this problem. The first

time a very coarse grid is used with only five grid refinement iterations and relatively

low tolerances of 1e-2. The solution from this optimization is then used as an initial

guess for the second run. The second optimization run includes a much finer grid

with 25 grid refinement iterations and higher tolerances of 1e-3.

The optimal control solution is then used to numerically integrate the EOM

(equations 2.28-2.33), and obtain the transfer trajectory. However, the time vector

that is output from the optimization algorithm is not the same size as the time vector

used in the numerical integration. In order to be able to pick the correct value

of the optimal control angle throughout the trajectory, a cubic spline is fit to the

optimal control curve and evaluated at the appropriate time value throughout the

integration. The resulting transfer trajectory is compared to a reference trajectory

of a non-maneuvering spacecraft at the same initial conditions. The time difference,

∆t, is defined as the difference between the time it took the maneuvering spacecraft

to reach the final position (νf) versus the time it would have taken the reference

spacecraft to reach the same position, and is calculated by:

∆t = νf

√
a30
µ
− tf (3.16)

where νf is the desired final position, and tf is the duration of the maneuver, or the

Mayer cost of the optimal solution. The eccentricity of the transfer trajectory can

also be plotted to validate the earlier assumption that the osculating orbit remains

fairly circular.

34

3.2 Feedback Control Formulation

Lyapunov theory is applied to the nonlinear EOM (equations 2.28-2.33) in order

to control the trajectory of the maneuvering spacecraft, as shown by Ilgen [27] and

Naasz [28]. First the EOM is written in matrix form:

ẋ = Nu (3.17)

where u = [ar, aθ, ah]
T and N is the six by three matrix comprised of the coefficients

in equations 2.28-2.33:

N =



2a2e sin ν
h

2a2p
hr

0

p sin ν
h

(p+r) cos ν+re
h

0

0 0 r cos(ω+ν)
h

0 0 r sin(ω+ν)
h sin i

−p cos ν
he

(p+r) sin ν
he

− r sin(ω+ν) cos i
h sin i

p cos ν
he

− (p+r) sin ν
he

0


(3.18)

The equation for ν, however, includes an additional term that is equivalent to the

mean motion of a circular orbit. The EOM is then written as:

ẋ = Nu +



0

0

0

0

0

h
r2


(3.19)

35

The Lyapunov function, V , is based on the difference between the osculating

COEs and the desired COEs and is defined as:

V =
1

2

(
K1

(a− a∗)2

R2
e

+K2(e− e∗)2 +K3(i− i∗)2 +K4(Ω− Ω∗)2+

K5(ω − ω∗)2 +K6(ν − ν∗)2
) (3.20)

where the starred values define the COEs of the desired final orbit, and K() represents

a positive gain associated with the COE being controlled. Since V is a function of the

squared difference between the osculating COEs and the desired COEs, it is positive

definite. The partial of the Lyapunov function with respect to the COEs used in the

Lie derivative is then written as:

∂V

∂x
= Vx =

[
K1

(a−a∗)
R2

e
K2(e− e∗) K3(i− i∗) K4(Ω− Ω∗) K5(ω − ω∗) K6(ν − ν∗)

]
(3.21)

The control law is then defined as:

u = −A NTV T
x

|NTV T
x |

(3.22)

where A is the constant acceleration magnitude, and the fraction term is a control unit

vector defining the direction of the acceleration. The EOM can then be numerically

integrated and the control acceleration vector is calculated at every iteration. As

was done in the optimal control formulation, the rate of change of ω can be set to

zero, and the rate of change of ν can be approximated by the mean motion to avoid

singularities in the EOM.

3.2.1 Gain Selection. Although the control law presented in equation 3.22

guarantees a globally asymptotically stable trajectory, its performance is somewhat

dependent on the values selected for the gains, K(). Intuitively, the gain value is

related to how quickly the target value for the respective COE is reached. For example,

if a large gain value was selected for K3 the controller’s focus would be changing the

36

inclination. On the other hand, if a COE is to be left uncontrolled, its respective gain

should be set to zero. Ilgen performed a short sensitivity analysis that showed that the

performance of the guidance law is mildly sensitive to the gain values [27]. He showed

that for the maneuvers he analyzed, changing the gain values would only change the

maneuver duration by a few hours, which is a small change since the maneuvers lasted

192 days. Since some small amount of sensitivity is present, however, it is conceivable

that there exists a value for each K() that makes the Lyapunov control law equivalent

to the true optimal control law. Naasz briefly discusses using time-varying gains that

maximize the change in each COE [28]. His derivation is specific to his problem, but

the concept he presents could be useful in future work. The topic of “optimal” gain

selection is not discussed further in this thesis, but is one of the recommendations for

future study.

3.2.2 Controlling the Position of the Spacecraft Within the Orbit. Due to

the mean motion term in equation 3.19, it is not possible to control ν directly. Naasz

shows a way that the position of the spacecraft within the orbit can be controlled

through the mean motion [28]. He states that for an uncontrolled spacecraft in a

circular orbit:

ν̇ = n (3.23)

and the relative dynamics are:

d

dt
(ν − ν∗) = n− n∗ =

√
µ

a3
−
√

µ

a∗3
= −Kν(ν − ν∗) (3.24)

where Kν is some positive gain. Solving for a results in a new value for the desired

semi-major axis, that will also correct the spacecraft’s position within the orbit:

a∗∗ =

(
−Kν√

µ
(ν − ν∗) +

1

a∗3/2

)−2/3
(3.25)

Naasz points out that as ν−ν∗ approaches zero the value of the desired semi-major axis

approaches the original value (a∗). His simulation results show that the above method

37

of mean motion control should only be used after the desired orbit plane orientation

is achieved. If mean motion control is applied from the start of the maneuver the

controller’s focus would be fixing the mean motion, and the rate of change of other

COEs would be small. Naasz therefore suggests that the orbit plane orientation

should be corrected first, and then mean motion control can be applied to correct the

spacecraft’s phase. [28]

The feedback control algorithm described above provides the ability to command

values for every orbital element, and can be used for both coplanar and out-of-plane

maneuvers. The output trajectory can be compared to a reference trajectory and the

∆t can be calculated. Due to the simplicity of the algorithm the implementation of

further capabilities is fairly straight-forward, whereas implementing such capabilitites

in an optimization algorithm may not be as intuitive. The addition of a thrust-coast

duty cycle is worth considering because it would provide flexibility in the applications

of this algorithm.

3.2.3 Thrust-coast Duty Cycle. The implementation of a thrust-coast duty

cycle applies to spacecraft that are not equipped with a propulsion system that has

the ability to thrust continuously. The duty cycle is based on timing - the spacecraft

is allowed to thrust for a given pulse duration and then must drift for a certain

amount of time before pulsing again. At each iteration of the numerical integration,

the algorithm checks the history of the control input and decides whether to thrust

or not based on the given duty cycle. The Lyapunov controller still guarantees that

the spacecraft will reach the desired final state, but it will take a longer amount of

time to do so.

3.3 Defining Desired Final Spacecraft Position

Sections 3.1 and 3.2 presented the details in setting up the algorithms that are

used throughout this research. One topic that was not discussed in the previous

sections, however, is how the final position of the spacecraft within the orbit (νf) is

38

defined. The angle νf should be selected such that when the spacecraft reaches it, the

desired ground target is overflown. Given the coordinates of the desired ground target

a position unit vector in the Earth-Centered-Fixed (ECF) frame can be written as:

xECF = cosλtgt cosφtgt (3.26)

yECF = cosλtgt cosφtgt (3.27)

zECF = sinλtgt (3.28)

where λtgt is the target latitude and φtgt is the target longitude. The position vector

can then be transformed into the Earth-Centered-Inertial (ECI) frame through a

single 3-axis rotation through the Greenwich sidereal time, γ, at the specified time of

overflight. The angle γ can be calculated using the known Greenwich sidereal time

at epoch and adding the angle through which the Earth has rotated by the time of

overflight:

γ = γg + ωe(tof − tep) (3.29)

where tof is the specified overflight time, tep is the epoch time, γg is the Greenwich

sidereal time at epoch, and ωe is the Earth’s rotation rate. The postition vector can

then be transformed into the ECI frame by:

rECI = RIF


xECF

yECF

zECF

 (3.30)

where RIF is the 3-axis rotation matrix defined as:

RIF =


cos γ − sin γ 0

sin γ cos γ 0

0 0 1

 (3.31)

39

The position vector can finally be transformed into the perifocal frame using a 3-1-3

rotation sequence through the angles ω, i, and Ω respectively, defining the orientation

of the final orbit plane. For coplanar maneuvers the orbital plane does not change

orientation and these values are the same as the initial conditions. If out-of-plane

maneuvers are considered, these values would have to be calculated. The position

vector in the perifocal frame can be written as:

r p = RPIrECI (3.32)

where RPI is the 3-1-3 rotation matrix defined as [11]:

RPI =


cosω cos Ω− sinω sin Ω cos i cosω sin Ω + sinω cos Ω cos i sinω sin i

− sinω cos Ω− cosω sin Ω cos i − sinω sin Ω + cosω cos Ω cos i cosω sin i

sin Ω sin i − cos Ω sin i cos i


(3.33)

For cases where the orbit plane orientation needs to be calculated, Escobal provides

equations that can be used to calculate the appropriate i and Ω such that the space-

craft will overfly the ground target at the specified time. He also shows that the value

of ω can be arbitrarily set to zero without changing the solution. [35]

With the position vector written in the perifocal frame the value of νf can be

calculated through general trigonometry:

νf = tan−1
yp
xp

(3.34)

where xp and yp are the first and second components of the perifocal position vector.

It is important to note that the method described above assumes that at the specified

overflight time the ground target is on the plane of the osculating orbit. In order

to fully solve the target overflight problem the time at which the target crosses the

plane of the orbit would need to be calculated, which is not in the scope of this thesis.

The target overflight problem has been discussed by other authors in the past, and

40

methods have been presented that could, in the future, be applied here [32, 33]. The

main focus of this research is the ∆t created by the maneuvering spacecraft, and the

value of νf is selected arbitrarily.

3.4 Summary

Chapter III presented the details in setting up the two models used throughout

this research. The minimum-time optimal control problem for the simplified EOM

was formulated using Euler-Lagrange theory, and the set-up of the pseudospectral

algorithm used to obtain the solution was discussed. For the feedback control model,

a control law was presented using a Lyapunov function that quantifies the proximity

of the osculating orbit to the target orbit. The next chapter presents the results

of multiple simulations that were run using the algorithms described, including the

scenario simulation that makes up the third phase of this research.

41

IV. Results and Discussion

This chapter presents the results of several test cases run using the algorithms devel-

oped as described in Chapter III. First, in-plane maneuvers using optimal control are

presented. A simple in-plane maneuver using feedback control is presented, and com-

pared to the optimal maneuver. Out-of-plane maneuverability, and the thrust-coast

duty cycle implementation through feedback control are also demonstrated. Using the

intuitive results for in-plane maneuvers, an analytical method is employed to derive

an equation for the time of arrival difference, ∆t, created by a maneuvering space-

craft. Finally using the analytical result and feedback control methods a spacecraft

maneuver scenario is presented.

4.1 Optimal Control Results

The optimal control algorithm for in-plane maneuvers is used to run four test

cases. The first three cases are phasing maneuvers, where the spacecraft’s objective

is to reach νf while its final altitude is constrained to be equal to the initial altitude.

Phasing maneuvers could be useful if the spacecraft’s altitude at the target point is

constrained for some reason but, as the following results show, they do not provide

the maximum amount of ∆t achievable. The final test case removes the final altitude

constraint and allows the spacecraft to lower its altitude to no less than 200 km until

νf is reached. The minimum altitude at 200 km is chosen to avoid causing a trajectory

that intersects the Earth’s surface. All maneuvers use a constant thrust of 1N for a

spacecraft with initial mass of 1000kg. Assuming that the change in mass throughout

the maneuver is negligible, the corresponding constant acceleration is 10−6km/s2.

4.1.1 Test Case 1. For the first case, the spacecraft starts on a circular orbit

with altitude of 1000km, which is equivalent to a = 7378km, inclined at i = 45o, and

Ω = ω = 0o. The target position is selected within the spacecraft’s first orbital period

at νf = 180o. As explained in Section 3.1, the control weight factor, α, should be set as

close to zero as possible while still allowing the nonlinear programming (NLP) solver

to converge to a solution. For the phasing maneuver being analyzed, it is expected

42

that the control angle, θ, must change direction half way through the maneuver in

order to return the spacecraft to its original altitude. Intuitively, the spacecraft should

first thrust against the velocity direction (θ = −90o) to lower its orbit and switch to

thrusting along the velocity direction (θ = 90o) to raise its orbit back to the original

altitude. Therefore, a jump discontinuity is expected in the optimal control solution.

With α = 0, the NLP has difficulties converging due to the jump discontinuity.

Figure 4.1 depicts the dependence of the optimal control solution on α. The curve

Figure 4.1: Control curve behavior for values of α

corresponding to α = 0 is the “true” optimal solution because it does not include an

additional Lagrange term in the cost functional being minimized. Therefore, the total

cost is only dependent on the duration of the maneuver. However, the curve exhibits

some small spikes near the jump discontinuity, creating difficulties for the NLP solver.

The plot was created by forcing the algorithm to stop after a small number of grid

refinement iterations so that the solution could be analyzed. When the NLP solver

was allowed to run for the full 25 iterations it could not converge to a solution. The

43

difficulties with the jump discontinuity were even more apparent in cases where the

maneuvers lasted for longer periods of time. The curve corresponding to α = 10−5

seems smoother, very close to the “true” optimal curve, and allows the NLP solver to

converge to a solution. The Mayer cost associated with this solution was equivalent

to the “true” optimal case, but this solution included a very small Lagrange cost. The

final curve, corresponding to α = 10−4, is even smoother but exhibits an unrealistic

quality. The optimal control angle is shown to start at about −70o and end at 70o

in just over 50 minutes. Although 50 minutes is not a long amount of time in orbit,

a realistic spacecraft would surely have the capability to change its thrust direction

much faster. In this case, the small rate of change for the control angle enforced by

α resulted in a Mayer cost that was slightly higher than the “true” optimal case. As

a result, α = 10−5 is chosen as the appropriate value for this case.

Figure 4.2 shows the optimal solution for this scenario. The top left plot shows

Figure 4.2: Optimal Solution for Test Case 1

44

that the spacecraft’s semi-major axis is lowered by slightly over 3km throughout the

maneuver, and the bottom left plot shows that the control angle starts at −90o and

ends at 90o, as expected. The bottom right plot shows that the change in eccentricity

throughout the maneuver is on the order of 10−4, which validates the assumption

made in Chapter III that the orbit remains fairly circular. The duration of the

maneuver is given by the Mayer cost, which is 3152.5sec or 52.5min for this case. The

additional Lagrange cost enforced by the weight factor, α, is 0.0631 and, as expected,

it is negligible compared to the Mayer cost. The corresponding ∆V can then be

calculated by multiplying the duration of the maneuver by the constant acceleration

magnitude, and for this case it is 0.0032km/s. Figure 4.3 shows the ground track of

the reference orbit and depicts the position of the maneuvering spacecraft at the end

of the maneuver, and the corresponding position of the spacecraft on the reference

orbit. Plotting the final position of the maneuvering spacecraft versus the reference

Figure 4.3: Ground Track for Test Case 1

spacecraft provides a visual depiction of the ∆t that is used to quantify the effect of

the maneuver. As can be seen in Figure 4.3, after maneuvering for almost one hour

45

the position markers are on top of each other, and the time difference created is not

visible. The ∆t for this case, calculated using equation 3.16, is 0.97sec. Therefore,

the spacecraft must be allowed to thrust for a longer period of time to create a larger

∆t.

4.1.2 Test Case 2. The second case considers a spacecraft in circular orbit

at an altitude of 500km, or a = 6878km, inclined at 65o, and Ω = ω = 0o. In order to

allow the spacecraft to thrust for a longer period of time the target position is chosen

at 180o within the spacecraft’s third orbital period, or νf = 900o. The appropriate

value of the control weight factor is selected using the same technique described in

Section 4.1.1, and is determined to be α = 10−5. Figure 4.4 shows the optimal solution

for this scenario. The bottom left plot, the control angle throughout the maneuver,

Figure 4.4: Optimal Solution for Test Case 2

shows the same behavior as was seen in the first case, and the spacecraft’s altitude was

lowered by about 13km as can be seen from the top left plot. The eccentricity of the

46

orbit again remains very close to zero, as seen in the bottom right plot. The duration

of the maneuver for this case is 14, 172sec, or 3.9hr, and the corresponding ∆V is

0.014km/s. The additional Lagrange cost is 0.3274, which once again is negligible

compared to the Mayer cost. Figure 4.5 shows the final orbit ground track of the

reference spacecraft and depicts the position of the maneuvering spacecraft at the end

of the maneuver, and the corresponding position of the spacecraft on the reference

orbit. The position markers in Figure 4.5 show a very small separation between the

Figure 4.5: Ground Track for Test Case 2

maneuvering and reference spacecraft after maneuvering for almost four hours. The

∆t for this case is 20sec, which could be a significant change based on the mission

requirements. However, if the requirement is to create a ∆t in the order of minutes,

or hours, the spacecraft must be allowed to thrust for a significantly longer amount

of time.

47

4.1.3 Test Case 3. The third case considers a spacecraft in circular polar

orbit (i = 90o) at an altitude of 500km, or a = 6878km, with Ω = ω = 0o. The target

position is chosen at 180o within the spacecraft’s 15th orbital period, or νf = 5220o,

in order to allow the spacecraft to thrust for a significant amount of time. The

appropriate value of the control weight factor is selected using the same technique

described in Section 4.1.1, and is determined to be α = 10−4. Figure 4.6 shows the

optimal solution for this scenario. As in the previous two cases, the control angle

Figure 4.6: Optimal Solution for Test Case 3

starts at −90o and ends at 90o as shown in the bottom left plot. The assumption

that the eccentricity remains close to zero is once again validated in the bottom right

plot. The top left plot shows that, with the longer maneuver duration, the spacecraft

was able to lower its altitude by about 73km. The duration of the maneuver for this

case is 81, 655sec, or 22.7hr, and the corresponding ∆V is 0.082km/s. The additional

Lagrange cost is 18.1630, which is larger than the Lagrange cost from the previous

two cases but still orders of magnitude smaller than the Mayer cost. Figure 4.7

48

shows the final orbit ground track of the reference spacecraft and depicts the position

of the maneuvering spacecraft at the end of the maneuver, and the corresponding

position of the spacecraft on the reference orbit. The position markers in Figure

Figure 4.7: Ground Track for Test Case 3

4.7 show a significant separation between the maneuvering and reference spacecraft

after maneuvering for almost 23 hours. The ∆t for this case is 11min, which is a

substantial change for the relatively low ∆V expended. Figure 4.7 also shows that

at the end of the maneuver the spacecraft is slightly offset from the reference ground

track. This eastward shift is due to the increase in velocity while the spacecraft’s

altitude is lowered. This effect would need to be accounted for when solving the full

target overflight problem, but does not affect the results of this research.

4.1.4 Test Case 4. The fourth case uses the same initial conditions and

target position as Case 3 (Section 4.1.3), but removes the final altitude constraint on

the spacecraft. Without the altitude constraint, the spacecraft will be able to lower

49

its altitude and reach the target position as fast as possible, therefore maximizing

the value of ∆t. Since the control angle is expected to be constant, α can be set

to zero for this case. Figure 4.8 shows the optimal solution for this scenario. The

Figure 4.8: Optimal Solution for Test Case 4

bottom left plot of Figure 4.8 shows that the control angle for this case is constant at

−90o, meaning that the spacecraft thrusts continuously in the anti-velocity direction

to lower its altitude. The top left plot shows that the altitude loss for this case is

about 144km, which is almost double the altitude loss in Case 3. The duration of

the maneuver for this case is 81, 011sec, or 22.5hr, and the corresponding ∆V is

0.081km/s. Since α = 0 for this case, there is no additional Lagrange cost. Figure 4.9

shows the final orbit ground track of the reference spacecraft and depicts the position

of the maneuvering spacecraft at the end of the maneuver, and the corresponding

position of the spacecraft on the reference orbit. The position markers in Figure 4.9

show an even larger separation than the one seen in Case 3. The ∆t for this case is

50

Figure 4.9: Ground Track for Test Case 4

21.7min, which is almost double the ∆t seen in Case 3. The ground track shift effect

that was discussed in Case 3 is also visible in Figure 4.9.

4.1.5 Summary of Optimal Control Results. The preceding sections pre-

sented results for four in-plane maneuvers using optimal control. The results from

the four cases are tabulated in Table 4.1 for the reader’s convenience.

Table 4.1: Optimal Control Results

Case No. af Constraint νf , deg tf , sec ∆V , km/s ∆t Created
1 Yes 180 3152.5 0.0032 0.97 sec
2 Yes 900 14,172 0.014 20 sec
3 Yes 5220 81,655 0.082 11 min
4 No 5220 81,011 0.081 21.7 min

The results in Table 4.1 show that constraining the final altitude of the space-

craft can decrease the amount of ∆t created by the maneuver. Unless specified in the

51

mission requirements, the final altitude of the spacecraft should be left unconstrained

for the types of maneuvers discussed. As a result, in order to maximize ∆t, spacecraft

should maneuver by thrusting continuously in the anti-velocity direction.

4.2 Feedback Control Results

The feedback control algorithm is used to demonstrate both in-plane and out-

of-plane maneuverability. The in-plane results are compared to the optimal control

result for Case 4 presented in Section 4.1.4. The out-of-plane maneuverability is

demonstrated by performing an inclination change maneuver. The results of the

maneuver are compared to the optimal results presented in Alfano’s thesis [24]. A

combined semi-major axis and inclination maneuver is also analyzed to examine the

effect of out-of-plane maneuvering on ∆t. Finally, the implementation of the thrust-

coast duty cycle is demonstrated by repeating the inclination change maneuver.

4.2.1 In-Plane Maneuver. The spacecraft starts at the same conditions as

in Case 4 (Section 4.1.4) - circular polar orbit at an altitude of 500km. The position

of the target is chosen at νf = 5220o, as in Section 4.1.4. The gains in the Lyapunov

function for this case are K1 = Kν = 1 and K2 = K3 = K4 = K5 = K6 = 0. Figure

4.10 shows a plot of the in-plane and out-of-plane control angles computed by the

feedback control algorithm. Figure 4.10 shows that the in-plane angle is constant at

−90o, and the out-of-plane, which is not clearly visible in the plot, is constant at 0o.

In this case, the feedback controller produced a result that is exactly the same as

the optimal result in Section 4.1.4. Figure 4.11 shows plots of all six COEs during

the maneuver. The top two plots in Figure 4.11 show the change in semi-major axis

and eccentricity, and their behavior is identical to the optimal results seen in Section

4.1.4. The middle two plots show that the inclination and RAAN are constant, since

the maneuver is coplanar. The plot of the true anomaly, or argument of latitude for

circular orbits, shows that the spacecraft ends at the desired final position. Figure 4.12

shows the final orbit ground track of the reference spacecraft and depicts the position

52

Figure 4.10: Control Angles for In-plane Maneuver Using Feedback Control

of the maneuvering spacecraft at the end of the maneuver, and the corresponding

position of the spacecraft on the reference orbit. Figure 4.12 is exactly the same as

the ground track for the optimal maneuver depicted in Figure 4.9. Therefore the ∆t

created in this case is 21.7min, which is equivalent to the optimal maneuver result.

53

Figure 4.11: COEs for In-plane Maneuver Using Feedback Control

54

Figure 4.12: Ground Track for In-plane Maneuver Using Feedback Control

55

4.2.2 Out-of-Plane Maneuver. A spacecraft in circular orbit at an altitude

of 500km, inclined at 45o is considered. With K3 = 1 and all other gains set to zero

the feedback controller is used to achieve an inclination of 40o, and the solution for

one orbital period is output. Figure 4.13 shows the control angles computed by the

feedback control algorithm. The plot in Figure 4.13 shows that the in-plane control

Figure 4.13: Control Angles for Inclination Change over One Orbit

angle is constant at 0o, which makes sense since only the out-of-plane component of

acceleration acts to change inclination. The out-of-plane control angle starts at −90o,

switches to 90o about a quarter way through the orbit, and switches back to −90o

for the last quarter of the orbit. The result in Figure 4.13 agrees with the optimal

result presented by Alfano [24]. Closer examination of Equation 2.30, defining the

rate of change of the inclination, shows that inclination changes as a function of cos ν.

Therefore, the change in thrust direction is necessary to account for the sign change

in the cosine function, and accumulate inclination change. If the thrust direction had

not changed throughout the orbit the net inclination change would be zero.

56

Figure 4.14 shows plots of all six COEs throughout the maneuver. Since only

Figure 4.14: COEs for Inclination Change Maneuver over One Orbit

an out-of-plane acceleration component is applied the only COEs that change, other

than change in ν due to the mean motion, are the inclination and RAAN, shown in

the middle two plots of Figure 4.14. The left plot shows that the inclination at the

end of one orbit is about 44.97o, which also agrees with Alfano’s analytical result [24].

The plot on the right shows that RAAN changes, but does not accumulate change,

like the inclination, because RAAN actually changes as a function of sin i, as defined

in Equation 2.31.

In this case, since the semi-major axis of the osculating orbit does not change,

and as a result the mean motion remains constant, the spacecraft does not gain any

∆t. In order to explore the possibility of affecting ∆t with out-of-plane maneuvers,

a combined semi-major axis and inclination change maneuver is considered. As ex-

57

plained in Section 3.2.2 the mean motion control method presented by Naasz should

not be used until the desired inclination is reached. Therefore, mean motion control is

not effective for this case. In order to perform the combined semi-major axis and in-

clination change maneuver the controller is asked to decrease the semi-major axis and

inclination by an arbitrary amount and is allowed to run for 22.5hr - the maneuver

duration for the in-plane maneuver case in section 4.2.1, and therefore expends the

same amount of ∆V . The result of this maneuver is then compared to the in-plane

maneuver result.

The in-plane maneuver presented in Section 4.2.1 is reconsidered with the ad-

ditional requirement of accumulating inclination change. The gain values K1 and K3

are initially set to unity and all other gains are set to zero. Two more gain combi-

nations are used to examine the difference in the results due to different gain values

(K1 = 10, K3 = 100 and K1 = 100, K3 = 10). Figure 4.15 shows the results for all

three sets of gain values. The in-plane angle for all three cases was constant at −90o

and is not shown in the plots. For the first case, K1 = 1, K3 = 1, the semi-major axis

decreases to 6743km and the inclination decreases to 89.86o. The out-of-plane control

angle alternates between −90o to 90o, as shown in the bottom right plot of Figure

4.15. Based on the final value of ν from the bottom left plot, the ∆t achieved in this

case is 20.6min, which is over one minute less than the in-plane maneuver result. For

the second case, K1 = 10, K3 = 100, the controller focuses on changing the inclination

more than the semi-major axis. As a result, the semi-major axis decreases to 6803km

and the inclination decreases to 89.65o. The out-of plane control angle alternates

between −90o and 90o, as in the first case, but a closer look at the plot reveals that

the amount of time spent thrusting directly out-of-plane is longer in this case. Based

on the final value of ν the ∆t achieved in this case is 11min, which is significantly

less than the in-plane maneuver result. Finally, for the last case, K1 = 10, K3 = 100,

the controller focuses on changing the semi-major axis more than the inclination. As

a result, the semi-major axis decreases to 6734km and the inclination decreases to

88.98o. The out-of-plane-control angle, in this case, starts oscillating between −20o

58

Figure 4.15: Combined Semi-major axis and Inclination Change Maneuver

and 20o and gradually increases in amplitude to approach ±90o. Based on the final

value of ν the ∆t achieved in this case is 21.5min, which is just slightly less than the

in-plane result.

The results presented above show that with the additional requirement to change

inclination, the spacecraft was not able to achieve the same amount of ∆t as with the

in-plane maneuvers. Therefore, in-plane maneuvers provide the maximum amount

of ∆t. Out-of-plane maneuvers should only be considered if mission requirements

dictate an orbit plane change.

4.2.3 Thrust-Coast Duty Cycle Implementation. The ability to implement

a thrust-coast duty cycle is demonstrated by repeating the inclination change ma-

neuver over one orbital period, presented in Section 4.2.2. In this case, however, the

59

spacecraft is only allowed to thrust continuously for 10 seconds, and must coast for 2

minutes between pulses. The 10 seconds on-2 minutes off cycle is selected arbitrarily

to demonstrate the algorithm’s capability, and the two numbers defining the duty

cycle can be easily changed to meet any user requirement. Figure 4.16 shows the

control angles computed by the feedback algorithm. Figure 4.16 clearly depicts the

Figure 4.16: Control Angles for Inclination Change with Thrust-Coast Duty Cycle

duty cycle, by showing the out-of-plane control angle at ±90o in 10 second increments

when the spacecraft is thrusting, and at 0o for 2 minute increments when the space-

craft is coasting. It is importnat to note that the spikes in Figure 4.16 represent the

time intervals that the control vector magnitude is non-zero, and the spaces between

spikes represent time intervals when the control vectror magnitude is zero (coasting).

The spikes do not nessarily mean that the actual thruster on a spacecraft must return

to 0o during the coasting periods.

Figure 4.17 shows plots of all six COEs throughout the maneuver. The middle

60

Figure 4.17: COEs for Inclination Change with Thrust-Coast Duty Cycle

left plot in Figure 4.17 shows that the inclination change over one orbit in this case

is much less than the inclination change for the continuous thrusting case. This

result is intuitive since the spacecraft thrusts for a significantly lower amount of time

throughout the maneuver.

The thrust-coast duty cycle can also be implemented by calculating an acceler-

ation magnitude, lower than the maximum acceleration magnitude available from the

propulsion system, that can be used in the continuous thrusting algorithm to produce

the same result. The amount of ∆V added per pulse can be calculated by:

∆Vpulse = TonA (4.1)

61

where Ton is the duration of the pulses, and A is the maximum acceleration magnitude

available from the propulsion system. The total number of pulses throughout the

maneuver is given by:

n =
tf

Ton + Toff
(4.2)

where tf is the duration of the maneuver, Ton is the duration of the pulses, and Toff

is the duration of the coasting period between pulses. The total ∆V added during

the maneuver can then be written as:

∆Vtot = n∆Vpulse = Aapproxtf (4.3)

where Aapprox is the acceleration magnitude that can be used in the continuous thrust-

ing algorithm to produce the results of the thrust-coast duty cycle. Solving equation

4.3 for Aapprox provides the result:

Aapprox =
Ton

Ton + Toff
A (4.4)

Equation 4.4 provides a significant result by showing that the implementation of the

thrust-coast duty cycle does not necessitate the development of a new algorithm. It

can be simulated in the continuous thrusting algorithm by modifying the acceleration

magnitude appropriately.

4.2.4 Summary of Feedback Control Results. The results presented in the

preceding sections demonstrated in-plane and out-of-plane maneuvers using a feed-

back control algorithm. The result of the in-plane maneuver was exactly equivalent

to the optimal result presented in Section 4.1.4. An inclination change maneuver was

presented to examine the inclination change over one orbital period and the result

matched the optimal control result presented by Alfano [24]. A combined semi-major

axis and inclination change maneuver was then presented and showed that maneu-

vering out-of-plane only decreases ∆t, and, unless absolutely necessary, should be

avoided. Finally, the thrust-coast duty cycle implementation was demonstrated by

62

repeating the previous inclination change maneuver, and it was shown that the duty

cycle can be simulated in the continuous thrusting algorithm by adjusting the value

of the constant acceleration magnitude.

4.3 Analytical Approach

Sections 4.1 and 4.2 presented intuitive results for in-plane maneuvers. It was

shown that the maximum amount of ∆t is achieved by thrusting continuously against

the velocity direction. This result can be used to derive an analytical equation for

the amount of ∆t created during any in-plane maneuver. Recall the two first-order

differential equations used in setting up the optimal control problem for in-plane

maneuvers, equation 3.8 and 3.9, with θ = −90o:

da

dt
= − 2
√
µ
a3/2A (4.5)

dν

dt
=

√
µ

a3
(4.6)

Equation 4.5 can then be integrated analytically after separating variables, as also

shown by Wiesel [14]: ∫ af

a0

a−3/2da =

∫ tf

t0

− 2
√
µ
Adt (4.7)

Integrating both sides of the equation above provides a result for the duration of the

maneuver:

tman = tf − t0 =

√
µ

A

(
a
−1/2
f − a−1/20

)
(4.8)

The only unknown value in equation 4.8 is the final value of the semi-major axis, af .

Consider a change of independent variables from t to ν, yielding a new differential

equation:
da

dν
=
da

dt

dt

dν
= − 2

µ
a3A (4.9)

63

By separating variables the equation can be integrated analytically:

∫ af

a0

a−3da =

∫ νf

ν0

− 2

µ
Adν (4.10)

which provides an expression for af in terms of νf , which is defined:

af =

(
1

a20
+

4

µ
A(νf − ν0)

)−1/2
(4.11)

Equation 4.11 can then be substituted into equation 4.8 and the time of arrival dif-

ference, ∆t, can be calculated by:

∆t =(νf − ν0)

√
a30
µ
− tman =

=(νf − ν0)

√
a30
µ
−
√
µ

A

[(
1

a20
+

4

µ
A(νf − ν0)

)1/4

− a−1/20

] (4.12)

The first term in equation 4.12 represents the amount of time it would take the

spacecraft to reach νf without maneuvering (the reference spacecraft), and the second

term is the duration of the maneuver. The analytic equation for ∆t can be a powerful

tool in analysis and mission planning.

The ∆t expression is used to examine how different values of the initial semi-

major axis affect the maneuvers. Given a range of values for νf , the expressions

presented above are used to calculate the maneuver duration and ∆t for two different

values of a0. Figure 4.18 shows the resulting plot. Although the two lines in Figure

4.18 are very close to each other, it can be easily seen that a spacecraft in a higher

orbit that maneuvers for the same amount of time as a spacecraft in a lower orbit,

thus burning the same amount of fuel, will achieve slightly higher values of ∆t. This

result is directly related to the fact that a spacecraft starting in a higher orbit will

lose a larger percentage of its altitude than a spaceraft starting in a lower orbit after

maneuvering for the same amount of time. The plot shown in Figure 4.18 can be

64

Figure 4.18: ∆t as a function of Maneuver Duration

useful when planning missions, and is a basic example of how the ∆t expression can

be used to provide valuable information.

4.4 Spacecraft Maneuver Simulation

In Section 4.3 an expression for ∆t was derived. This section uses the analytical

expression, combined with the feedback control algorithm that was developed in Sec-

tion 3.2, to analyze a spacecraft maneuver that resembles a real world scenario more

closely. The subject spacecraft is in circular orbit at a given altitude, a0 = 7378km,

inclined at i = 45o, and is tasked to maneuver, expending the minimum amount of

fuel, within a given amount of lead time, tlead, so that the final position, νf , is reached

30 seconds earlier than expected, or ∆t = 30sec at the end of the maneuver. The

initial position of the spacecraft is set to ν0 = 0o. Depending on the amount of lead

time available, the spacecraft may need to thrust for the entire time, thrust for a cer-

65

tain amount of time and drift for the remainder, or provide feedback that the desired

∆t is not achievable in the amount of time given. A term can be added to the ∆t

expression, equation 4.12, that accounts for the drifting time as such:

∆t = (νf − ν0)

√
a30
µ
− tman − tdrift (4.13)

where tman + tdrift = tlead. Equation 4.13 can then be solved for νf , which defines the

final position within the orbit:

νf = ν0 + (∆t+ tlead)

√
µ

a30
(4.14)

The spacecraft then starts at ν0, maneuvers to an intermediate position, ν1, and drifts

to the final position νf . Based on equations 4.8 and 4.11 the duration of the maneuver

and the final value of the semi-major axis can be written as:

tman =

√
µ

A

[(
1

a20
+

4

µ
A(ν1 − ν0)

)1/4

− a−1/20

]
(4.15)

af =

(
1

a20
+

4

µ
A(ν1 − ν0)

)−1/2
(4.16)

tdrift is then defined by the mean motion of the orbit reached at the end of the

maneuvering period:

tdrift = (νf − ν1)

√
a3f
µ

(4.17)

Combining the results in equations 4.15-4.17 and substituting into equation 4.13 yields

the following algebraic expression:

∆t =(νf − ν0)

√
a30
µ
−
√
µ

A

[(
1

a20
+

4

µ
A(ν1 − ν0)

)1/4

− a−1/20

]
−

− (νf − ν1)

√√√√(1
a20

+ 4
µ
A(ν1 − ν0)

)−3/2
µ

(4.18)

66

The only unknown quantity in equation 4.18 is the intermediate position, ν1, which

has a unique solution. An algebraic solver is used to compute the value of ν1, which

provides a solution for the duration of the maneuver and the drift period. If the

spacecraft is not given enough lead time, however, equation 4.18 cannot be solved,

meaning that the desired ∆t cannot be achieved in the allotted lead time.

Once tman and tdrift are known, the amount of ∆V required to achieve ∆t =

30sec is given by:

∆Vreq = Atman (4.19)

where A is the continuous acceleration magnitude. In the feedback control algorithm,

another first-order differential equation is added defining the rate of change of the

spacecraft’s mass [36]:

ṁ = − T

g0Isp
(4.20)

where T is the constant thrust magnitude, Isp is the engine’s specific impulse, and

g0 = 9.80655m/s2 is the gravitational acceleration at sea level. Equation 4.20 is

numerically integrated along with the EOM to track the spacecraft’s mass throughout

the maneuver. The amount of ∆V can then be calculated at each iteration through

the rocket equation [36]:

∆V = g0Isp ln
m0

m
(4.21)

where m0 is the initial spacecraft mass, and m is the mass at the respective integration

step. The Isp value chosen for this simulation is 1500sec, which is in the middle of the

range of Isp values for the type of propulsion system discussed in this research [36].

Once the ∆V reaches the amount of ∆V required, calculated from equation 4.19, the

algorithm commands the spacecraft to drift.

The first set of simulations analyze maneuvers to achieve ∆t = 30sec with

tlead = 3hr, 10hr, 24hr, and 48hr respectively. With tlead = 3hr, the simulation stops

when the equation solver cannot find a solution for ν1. The other three simulations

provide trajectories for the spacecraft thrusting against the velocity direction for

67

a certain amount of time and drifting for the remainder. Figure 4.19 shows the

output plots for the tlead = 10hr case. The four plots in Figure 4.19 show that the

Figure 4.19: Simulation Solution for 10-hour Lead Time

spacecraft thrusts for about 35min and drifts for the remainder of the time. While

the spacecraft is thrusting in the anti-velocity direction, its semi-major axis decreases

and its eccentricity change is negligible. Figure 4.20 shows the final position of the

maneuvering spacecraft compared to the ground track of a reference spacecraft. The

position markers on Figure 4.20 depict the 30 second separation that is achieved at

the end of the maneuver. The plots for the cases where tlead = 24hr, 48hr show the

exact same trends, with shorter maneuvering periods and longer drift periods, and

are not included.

The results from all four simulations are consolidated and presented in Table

4.2. The results show that the longer the lead time allowed for the maneuver, the

68

Figure 4.20: Simulation Ground Track for 10-hour Lead Time

Table 4.2: Simulation Results

Sim No. tlead, hr tman, min tdrift, hr ∆V , km/s af , km ∆t, sec
1 3 N/A N/A N/A N/A N/A
2 10 35.04 9.42 0.0021 7373.8 30
3 24 14.25 23.76 0.00086 7376.3 30
4 48 7.1 47.88 0.00043 7377.1 30

smaller the duration of the thrusting period. Therefore, fuel can be saved by allowing

the spacecraft more time to complete the maneuver.

4.4.1 Simulation With Initial Coast Period. Another scenario is considered

where the spacecraft has the same objective of ∆t = 30sec, but has an enforced hold

time prior to being allowed to maneuver. For example, if the spacecraft generates a

trajectory for the maneuver on board, the ground station may need time to analyze

the trajectory before allowing the spacecraft to continue. The algorithm then needs to

69

implement a delay time, tdelay, and compute the new initial position of the spacecraft,

ν∗0 , after the initial coast period by:

ν∗0 = ν0 + tdelay

√
µ

a30
(4.22)

Equation 4.18 can be solved, as previously, after replacing ν0 with ν∗0 . The previous

simulation, with tlead = 10hr, is rerun with tdelay = 1hr. Figure 4.21 shows the

resulting plots, and clearly depicts the 1hr initial delay. The resulting ground track

Figure 4.21: Simulation Solution for 10-hour Lead Time with 1-hour Delay

is exactly the same as the ground track shown in Figure 4.20.

With an initial coasting period enforced, the spacecraft must thrust for a longer

amount of time, and have less time to drift, to achieve the desired amount of ∆t.

In this case the spacecraft had to maneuver for tman = 39.22min, and drifted for

70

tdrift = 8.35hr, corresponding to ∆V = 0.002354km/s2. This result shows that the

initial delay causes the spacecraft to burn more fuel in order to create the same effect.

The most efficient way to conduct the maneuver would be to start thrusting as early

as possible. However, if an initial delay is necessary, this algorithm could be a useful

tool in mission planning.

4.4.2 Simulation With Thrust-Coast Duty Cycle. The last scenario consid-

ered includes the implementation of the the 10 seconds on-2 minutes off duty cycle

presented in Section 4.2.3. In this case, Equation 4.18 can be solved, as previously,

after modifying the acceleration magnitude as shown in Equation 4.4. The previous

simulation, with tlead = 24hr, is rerun with the thrust-coast duty cycle included.

Figure 4.22 shows the resulting plots. The bottom right plot, showing the in-plane

Figure 4.22: Simulation Solution for 24-hour Lead Time with Thrust-Coast Cycle

71

control angle, in Figure 4.22 depicts the individual 10-second pulses. Due to the large

timescale of the plot, however, the individual pulses are not clearly visible. Figure

4.23 shows the resulting ground track, depicting the 30-second separation between

the maneuvering and reference spacecraft. As expected, with the thrust-coast duty

Figure 4.23: Simulation Ground Track for 24-hour Lead Time with Thrust-Coast Cy-
cle

cycle the spacecraft must thrust for a longer amount of time to achieve the desired

∆t. In this case the spacecraft had to maneuver for tman = 3.298hr, and drifted for

tdrift = 20.7hr. The ∆V expended for this maneuver is 0.000915km/s2, which is

higher than the result shown on Table 4.2 for the third case because of the longer

tman required.

72

4.5 Summary

This chapter presented the results for several cases analyzed during the course

of this research. First, the optimal results were presented for in-plane phasing ma-

neuvers, where the final altitude of the spacecraft is constrained. Then the optimal

result for an in-plane maneuver with the final altitude unconstrained was presented,

to show that ∆t is maximized. Then, an in-plane maneuver using feedback control

was presented to show that the result is equivalent to the optimal result. Out-of-

plane maneuverability with the feedback control algorithm was then demonstrated,

and compared to optimal out-of-plane maneuvers presented by Alfano [24]. These

results show that the feedback control algorithm produced optimal results, at least

for the cases presented here. Since the optimal control and feedback control algo-

rithms produced the same result, then the feedback control algorithm had a distinct

advantage in that it is not computationally intensive and is easy to implement. The

feedback control algorithm also allowed for additional capabilities to be added very

easily, and the implementation of a thrust-coast duty cycle was demonstrated as an

example. Finally, a “realistic” scenario was presented, requiring a spacecraft to ma-

neuver in order to achieve a certain amount of ∆t. Results from multiple simulations

were presented and compared. It was shown that the most fuel efficient way to con-

duct the maneuver was to provide as much lead time as possible, and maneuver as

early as possible.

73

V. Conclusions and Future Work

5.1 Overiew

The objective of this research was to develop an algorithm that produces tra-

jectories for responsive maneuvers. The requirement for the maneuver was that the

spacecraft had to change its arrival time over a particular location within its orbit, ∆t.

Two algorithms were developed - an optimal control algorithm using pseudospectral

methods, developed through optimal control theory, and a feedback control algorithm,

developed through Lyapunov theory. Results using boths algorithms were presented

and discussed.

The optimal control algorithm was used to analyze four in-plane maneuvers.

The first three maneuvers were basic phasing maneuvers, in which the spacecraft was

forced to return to its original altitude. The final maneuver removed the constraint

on the final altitude, allowing the spacecraft to remain at a lower altitude at the

end of the maneuver. Results showed that the most efficient way to maneuver in-

plane was by thrusting in the anti-velocity direction, which was an expected result,

and therefore validating optimality. It was also concluded that the amount of ∆t is

maximized when the final altitude is left unconstrained.

The feedback control algorithm was used to analyze both in-plane and out-of-

plane maneuvers. When available, results were compared to optimal solutions to show

that feedback control methods can be used to produce optimal results. The in-plane

maneuver result was exactly the same as the result shown with the the optimal control

algorithm. Out-of-plane maneuverability was demonstrated by an inclination change

maneuver and results were compared to optimal results presented by another author.

A combined semi-major axis and inclination change maneuver was also presented to

show the effects of out-of-plane thrusting on ∆t. It was concluded that out-of-plane

maneuvering decreases the achievable ∆t, and should be avoided unless absolutely

necessary.

It was noted that while both algorithms produced the same result for in-plane

maneuvers, the feedback control algorithm has a distinct advantage over the optimal

74

control algorithm. The optimal control algorithm was very sensitive to user-input

initial guesses, and failed to converge at times due to numerical difficulties. The

feedback control algorithm, on the other hand, was very easy to implement and less

computationally intensive. Additionally, it was mentioned that new capabilities and

more complexity would be easier to implement in the feedback control algorithm.

An example was presented by adding a thrust-coast duty cycle to the algorithm and

repeating the inclination change maneuver.

Using the intuitive result that a spacecraft must thrust continuously in the

anti-velocity direction to maximize ∆t, the simplified equations of motion for the

in-plane problem were integrated analytically, and an algebraic expression for ∆t

was derived. The analytical expression was shown to be a useful result for mission

planning purposes. A simple example was presented, where a mission planner may

need to decide on the altitude of an orbit. It was shown that a higher orbit would

result in higher values of ∆t than a lower orbit, after thrusting for the same amount

of time.

Finally, using the feedback control algorithm and the derived analytical result,

a set of simulations was presented for a “realistic” maneuver. The subject spacecraft

was tasked to maneuver, given a certain amount of lead time, to achieve 30 seconds

of ∆t. Simulation results were presented for different amounts of lead time, for a

maneuver start delay, and for a thrust-coast duty cycle system. The results were

intuitive, and it was concluded that the most fuel efficient way to conduct this type

of maneuver is to allow as much lead time as possible, and begin thrusting as soon as

possible.

The development of the two algorithms described throughout this thesis serve as

a strong foundation for future algorithms that can be implemented on actual satellites.

75

5.2 Recommendations for Future Work

Since the focus of this thesis was the development of an algorithm, and not

necessarily the analysis of a specific scenario, future work could consider a specific

maneuver and provide more insight on the effects of changing different parameters,

such as spacecraft mass, thrust magnitude, engine parameters, etc. A few topics were

also mentioned throughout this thesis that were not researched in detail. Firstly,

the orbit determination and estimation for a spacecraft conducting the maneuvers

discussed here would be a necessary research topic in order to fully analyze the effec-

tiveness of responsive flexible collection. Secondly, the full ground target overflight

problem needs to be considered next so that the spacecraft actually maneuvers to

ovefly a specific point on Earth, instead of an arbitrary position within the orbit.

As discussed in Chapter III some work in this area has already been done by other

authors, and therefore the focus would be applying those methods to the algorithms

developed here. Lastly, the topic of optimal gains for the feedback controller could

be researched in order to implement a gain selection process that always produces

optimal results. Another important upgrade to the algorithms would be the addition

of natural perturbing forces to the equations of motion. For the orbits discussed here,

natural effects like air drag and gravitational effects would surely have significant

effects, and in some cases could result in fuel savings. The added fidelity to the algo-

rithms would be critical, and analyzing how the addition of perturbing forces changes

the maneuver trajectory would be valuable. Chapter II described other sets of vari-

ables that can be used to formulate the problem, but only the COEs were considered

in this thesis. Reformulating the problem in a different set of variables, namely polar

coordinates and equinoctial elements, would provide valuable results. These sets of

variables would avoid the singularities encountered in the COE equations and could

be used to implement other optimal control or feedback control methods.

76

Appendix A. The Equations of Motion in Terms of Equinoctial

Elements

This appendix is a brief overview of the mathematics behind formulating the equations

of motion(EOM) in terms of the equinoctial elements. Although the formulation below

has been shown by several authors, the work shown here is taken from [18]. The key

terms in formulating the EOM are the partial derivatives of the equinoctial elements

with respect to the velocity vector, defined by equation 2.64.

Chobotov first derives the partials of the position vector with respect to the

equinoctial elements (∂r/∂aβ) using the definition of the position vector, given in

equation 2.58, and the definitions of Ẋ1 and Ẏ1 in equations 2.60 and 2.61.

∂r

∂a
=
∂X1

∂a
f̂ +

∂Y1
∂a

ĝ =

(
X1

a
− 3

2

t

a
Ẋ1

)
f̂ +

(
Y1
a
− 3

2

t

a
Ẏ1

)
ĝ (A.1)

∂r

∂h
=
∂X1

∂h
f̂ +

∂Y1
∂h

ĝ (A.2)

∂r

∂k
=
∂X1

∂k
f̂ +

∂Y1
∂h

ĝ (A.3)

where the partials of the position components with respect to h and k are given by

∂X1

∂h
= a

[
−(h cosF − k sinF)

(
β +

h2β3

1− β

)
− a

r
cosF (hβ − sinF)

]
(A.4)

∂X1

∂k
= −a

[
(h cosF − k sinF)

hkβ3

1− β
+ 1 +

a

r
sinF (sinF − hβ)

]
(A.5)

∂Y1
∂h

= a

[
(h cosF − k sinF)

hkβ3

1− β
− 1 +

a

r
cosF (kβ − cosF)

]
(A.6)

∂Y1
∂k

= a

[
(h cosF − k sinF)

(
β +

k2β3

(1− β)

)
− a

r
sinF (cosF − kβ)

]
(A.7)

The partial derivatives of the position vector with respect to the elements p and q

are written after observing that X1 and Y1 are not functions of p and q. The unit

vectors f̂ and ĝ, however, are functions of p and q as shown in equations 2.35 and

2.36. Chobotov writes the partials of the position vector with respect to p and q as

77

follows.

∂r

∂p
= X1

∂f̂

∂p
+ Y1

∂ĝ

∂p
=

2

1 + p2 + q2
[q(Y1f̂ −X1ĝ)−X1ŵ] (A.8)

∂r

∂q
= X1

∂f̂

∂q
+ Y1

∂ĝ

∂q
=

2

1 + p2 + q2
[p(X1ĝ − Y1f̂) + Y1ŵ] (A.9)

Finally, the partial derivative of the position vector with respect to the mean longitude

can be written by utilizing the relationship between the mean longitude and the

eccentric longitude.
∂r

∂λ
=
∂r

∂F

∂F

∂λ
=

ṙ

n
(A.10)

The last terms needed to derive the EOM are the Poisson brackets in terms of

the equinoctial elements, which can be derived using the transformation presented

in equation 2.65. The middle term in the equation, [(aλ, aµ)], represents the skew-

symmetric matrix of Poisson brackets in terms of the classical orbital elements, and

is defined as follows.

[(aλ, aµ)] =



0 0 0 0 0 −2
(
a
µ

)1/2
0 0 0 (1−e2)1/2

e(µa)1/2
−(1−e2)
e(µa)1/2

0 1
(µp)1/2 sin i

− cos i
(µp)1/2 sin i

0

0 0 0

0 0

−Sym 0


(A.11)

where p = a(1 − e2). The other two matrices in equation 2.65 are comprised of the

partial derivatives of the equinoctial elements with respect to the classical elements.

Since the two matrices are transposes of each other only the first matrix is shown

78

below.

[
∂pα
∂aλ

]
=



1 0 0 0 0 0

0 h√
h2+k2

0 k k 0

0 k√
h2+k2

0 −h −h 0

0 0 0 1 1 1

0 0 p(1+p2+q2)

2
√
p2+q2

q 0 0

0 0 q(1+p2+q2)

2
√
p2+q2

−p 0 0


(A.12)

After carrying out the matrix multiplications Chobotov presents the partials of the

equinoctial elements with respect to velocity as the six by three matrix M .

M =



(
∂a
∂ṙ

)T(
∂h
∂ṙ

)T(
∂k
∂ṙ

)T(
∂p
∂ṙ

)T(
∂q
∂ṙ

)T(
∂λ
∂ṙ

)T


=



M11 M12 M13

M21 M22 M23

M31 M32 M33

M41 M42 M43

M51 M52 M53

M61 M62 M63


(A.13)

79

where

M11 =
2Ẋ1

n2a
(A.14)

M12 =
2Ẏ1
n2a

(A.15)

M13 = 0 (A.16)

M21 =

√
1− h2 − k2
na2

(
∂X1

∂k
− hβ

n
Ẋ1

)
(A.17)

M22 =

√
1− h2 − k2
na2

(
∂Y1
∂k
− hβ

n
Ẏ1

)
(A.18)

M23 =
k(qY1 − pX1)

na2
√

1− h2 − k2
(A.19)

M31 = −
√

1− h2 − k2
na2

(
∂X1

∂h
+
kβ

n
Ẋ1

)
(A.20)

M32 = −
√

1− h2 − k2
na2

(
∂Y1
∂h

+
kβ

n
Ẏ1

)
(A.21)

M33 = − h(qY1 − pX1)

na2
√

1− h2 − k2
(A.22)

M41 = 0 (A.23)

M42 = 0 (A.24)

M43 =
(1 + p2 + q2)Y1

2na2
√

1− h2 − k2
(A.25)

M51 = 0 (A.26)

M52 = 0 (A.27)

M53 =
(1 + p2 + q2)X1

2na2
√

1− h2 − k2
(A.28)

M61 =
1

na2

[
−2X1 +

√
1− h2 − k2

(
hβ
∂X1

∂h
+ kβ

∂X1

∂k

)]
(A.29)

M62 =
1

na2

[
−2Y1 +

√
1− h2 − k2

(
hβ
∂Y1
∂h

+ kβ
∂Y1
∂k

)]
(A.30)

M63 =
qY1 − pX1

na2
√

1− h2 − k2
(A.31)

The componets of the M matrix can then be used to form the full set of EOM in

terms of the equinoctial elements as shown in equations 2.66 through 2.71.

80

Appendix B. Optimal Control Algorithm in MATLAB

This Appendix includes the code that was written for the optimal control algorithm.

The code is comprised of a main m-file that is used to run the algorithm, and includes

two functions, defining the cost functional being mimized, and the differential equa-

tions governing the system dynamics. For the calculation of sidereal time, a series

of functions are called that are not provided here. These scripts were taken from

Vallado [11].

Main Code

%%

% MODEL FOR CO-PLANAR MANEUVERS

% Written by: Capt Costas Zagaris, AFIT Master’s Student

% Last Edited on: 9 Jan 2012

% OBJECTIVE: The objective of this code is to compute the minimum-time

% optimal trajectory for a satellite under constant low thrust. The

% maneuvers considered here are co-planar, and the thrust vector is

% restricted to lie on the plane of the velocity vector.

% MANEUVER PROFILE: The satellite starts at a circular orbit with a

% given altitude, and will maneuver to achieve a given true anomaly, with

% the intent of overflying a ground target, at the minimum amount of time.

% The final altitude of the satellite is not constrained. The magnitude

% of the thrust vector is assumed constant, which results in a constant

% acceleration applied to the satellite. The direction of the acceleration

% vector is treated as the control variable.

%%

close all; clear all; clc;

format long;

81

% Declare global variables

global mu omega_earth gamma_g ar ah atheta solution a0 nu0 nuf A

% Define Constants

mu = 3.986e5; % km^3/s^2 - Earth’s Gravitational constant

omega_earth = 7.2921e-5; % rad/s - Earth’s rotation rate

%% PROPAGATE REFERENCE ORBIT

% NOTE: The reference orbit is the satellite’s orbit with only two-body

% motion taken into consideration, i.e no maneuvering acceleration

% Enter Initial Conditions - User Input

a0 = 6878; % Initial semi-major axis, km

e0 = 0; % Initial eccentricity, unitless

i0 = 90*pi/180; % Initial inclination, rad

Omega0 = 0; % Initial RAAN, rad

w0 = 0; % initial argument of perigee ,rad

nu0 = 0; % initial true anomaly, rad

% Compute period of reference orbit

Pref = 2*pi*sqrt(a0^3/mu); % sec

% Define start and end times for orbit propagation as a function of orbital

% period

ti = 0; % Start time

tf = 15*Pref; % End time

t_step = 60; % step size, sec

t_vec = ti:t_step:tf; % time vector for numerical integration

% Setup Variables for Integration

82

% Enter the start date and time to calculate appropriate Greenwich

% sidereal time (GST)

Yr = 2011; % Year

Mo = 6; % Month, 1-12

D = 14; % Day, 1-31

H = 16; % Universal Time, Hour 1-23

M = 0; % Universal Time, Minutes 0-59

S = 0; % Universal Time, Seconds 0-59.999

% NOTE: Functions "julianday", "wgs84data", and "gstime" are required

JD = julianday(Yr,Mo,D,H,M,S); % Calculates Julian Date

wgs84data % load global conversion factors

gamma_g = gstime(JD); % Clalculates GST at maneuver start

% Define intial state vector of COEs

x0 = [a0 e0 i0 Omega0 w0 nu0];

% Define Acceleration vector components

ar = 0; % radial acceleration, km/s^2

ah = 0; % normal acceleration, km/s^2

atheta = 0; % tangential acceleration, km/s^2

% Vehicle Parameters

m = 1000; % kg, Vehicle mass

% Numerical Integration using ode45

options = odeset(’MaxStep’,6); %set ODE45 options

% NOTE: Function "LPE_Accel" required

[t_ref,x_ref]=ode45(@LPE_Accel,t_vec,x0,options); %call ODE45

83

% Separate Variables

a_ref = x_ref(:,1); % Semi-major axis, km

e_ref = x_ref(:,2); % Eccentricity, unitless

i_ref = x_ref(:,3).*180/pi; % Inclination, deg

Omega_ref = x_ref(:,4)*180/pi; % RAAN, deg

w_ref = x_ref(:,5)*180/pi; % Argument of perigee, deg

nu_ref = x_ref(:,6)*180/pi; % True anomaly, deg

% These are the COEs for the reference orbit propagated for the desired

% amount of time

% SANITY CHECK: Since the reference orbit represents 2-body motion the COEs

% should be constant!

% Convert time to hours for plots

t_hr_ref = t_ref./(3600);

% From numerical intergration results calculate r and v in the ECF frame

% NOTE: Function "coe2rv" is required

[x, y, z, xdot, ydot, zdot] = ...

coe2rv(a_ref, e_ref, i_ref, Omega_ref, w_ref, nu_ref, t_ref);

% Calculate latitude and longitude from ECF position

fi_ref = atan2(y,x)*180/pi; % longitude, deg

lamda_ref = asin(z./sqrt(x.^2+y.^2+z.^2))*180/pi; % latitude, deg

% These values can be used to plot the ground track of the reference orbit

%% OPTIMIZATION ALGORITHM

%%

% The Optimization package used in this model is GPOPS 4.1

% Software is required to run this portion of the code

% GPOPS is run twice: the first run uses a coarse grid and a larger

84

% tolerance to get an intial solution; the second run uses a finer grid and

% smaller tolerance and uses the first run’s result as a guess in order to

% get a refined solution.

%%

%% GPOPS First Run

% Initialize GPOPS for first run

run(’I:\THESIS\MATLAB Model\GPOPS41\gpops\gpopsSetup.m’)

% The path input in the command needs to be valid for the computer that is

% being used. For example if I was running this on my home computer the

% command would look like:

% run(’C:\Users\Costas\Documents\Costas AFIT Stuff\Thesis\MATLAB Model\...

% GPOPS41\gpops\gpopsSetup.m’)

% User-defined constants

nuf = 14*2*pi + 180*pi/180; % final desired true anomaly

T = 1; % Constant thrust, Newtons

A = T/m*10^(-3); % constant acceleration magnitude, km/s^2

% Initial and final conditions

a0 = a0; % initial orbit radius

% Define final altitude if it is to be constrained

% af = a0;

nu0 = nu0; % initial true anomaly

% The dynamics equations have been simplified and only semi-major axis and

% true anomaly are considered

% Limits during maneuver

amin = 6578; % km, cannot go below this altitude

85

amax = 100000; % km, cannot go above this altitude

numin = 0; % rad, negative true anomaly not valid

numax = 15*2*pi; % rad, cannot go above this value - since the desired

% final true anomaly is 20 revolutions (40*pi) ahead the max true anomaly

% will not be more than 21 full revolutions

% Control and time boundaries

umin = -pi/2; % minimum control angle

umax = pi/2; % maximum control angle

t0min = 0; % minimum initial time

t0max = 0; % maximum initial time

tfmin = 0; % minimum final time

tfmax = 15*Pref; % maximum final time

% GPOPS Setup

% Phase 1 Information

iphase = 1;

limits(iphase).intervals = 1;

limits(iphase).nodesperint = 10;

limits(iphase).time.min = [t0min tfmin];

limits(iphase).time.max = [t0max tfmax];

% LIMITS ON STATE AND CONTROL VALUES THROUGHOUT TRAJECTORY

% to constrain final altitude use:

% limits(iphase).state.min(1,:) = [a0 amin af];

% limits(iphase).state.max(1,:) = [a0 amax af];

% to leave final altitude unconstrained use:

limits(iphase).state.min(1,:) = [a0 amin amin];

limits(iphase).state.max(1,:) = [a0 amax amax];

limits(iphase).state.min(2,:) = [nu0 numin nuf];

86

limits(iphase).state.max(2,:) = [nu0 numax nuf];

limits(iphase).control.min = umin;

limits(iphase).control.max = umax;

% LIMITS ON PARAMETERS, PATH, AND EVENT CONSTRAINTS

limits(iphase).parameter.min = []; % None

limits(iphase).parameter.max = []; % None

limits(iphase).path.min = []; % None

limits(iphase).path.max = []; % None

limits(iphase).event.min = []; % None

limits(iphase).event.max = []; % None

% GUESS SOLUTION

guess(iphase).time = [t0min; tfmax];

% Semi-major axis guess for constrained altitude:

% guess(iphase).state(:,1) = [a0; af];

% Semi-major axis guess for unconstrained altitude:

guess(iphase).state(:,1) = [a0; amin];

guess(iphase).state(:,2) = [nu0; nuf];

% Control guess for constrained altitude:

% guess(iphase).control = [-pi/2; pi/2];

% Control guess for unconstrained altitude:

guess(iphase).control = [-pi/2; -pi/2];

guess(iphase).parameter = []; % No parameters in Phase 1

% NOTE: Functions "phasingmaneuverCost" and "phasingmaneuverDae" required

linkages = [];

setup.name = ’Phasing-Maneuver-Problem’;

setup.method = ’gauss’;

setup.funcs.cost = ’phasingmaneuverCost’;

setup.funcs.dae = ’phasingmaneuverDae’;

87

setup.limits = limits;

setup.guess = guess;

setup.linkages = linkages;

setup.derivatives = ’automatic’;

setup.direction = ’increasing’;

setup.autoscale = ’off’;

setup.solver = ’snopt’;

setup.mesh.grid = ’hp’;

setup.mesh.tolerance = 1e-2;

setup.mesh.iteration = 5;

setup.mesh.on = ’yes’;

setup.mesh.guess = ’yes’;

setup.mesh.nodelimit = 200;

output = gpops(setup);

solution = output.solution;

solution.control = unwrap(solution.control);

save initial_guess

%% GPOPS Second Run

% Initialize GPOPS for second run

% run(’I:\THESIS\MATLAB Model\GPOPS-v31\GPOPS 3.1\gpopsinitialize.m’)

% The path input in the command needs to be valid for the computer that is

% being used. For example if I was running this on my home computer the

% command would look like:

% run(’C:\Users\Costas\Documents\Costas AFIT Stuff\Thesis\MATLAB Model\...

% GPOPS-v31\GPOPS 3.1\gpopsinitialize.m’)

% User-defined constants

88

nuf = 14*2*pi + 180*pi/180; % final desired true anomaly

T = 1; % Constant thrust, Newtons

A = T/m*10^(-3); % constant acceleration magnitude, km/s^2

% Initial and final conditions

a0 = a0; % initial orbit radius

% Define final altitude if it is to be constrained

% af = a0;

nu0 = nu0; % initial true anomaly

% The dynamics equations have been simplified and only semi-major axis and

% true anomaly are considered

% Limits during maneuver

amin = 6578; % km, cannot go below this altitude

amax = 100000; % km, cannot go above this altitude

numin = 0; % rad, negative true anomaly not valid

numax = 15*2*pi; % rad, cannot go above this value - since the desired

% final true anomaly is 20 revolutions (40*pi) ahead the max true anomaly

% will not be more than 21 full revolutions

% Control and time boundaries

umin = -pi; % minimum control angle

umax = pi; % maximum control angle

t0min = 0; % minimum initial time

t0max = 0; % maximum initial time

tfmin = 0; % minimum final time

tfmax = 15*Pref; % maximum final time

% Define guess based on previous solution

89

a_guess = solution.state(:,1);

nu_guess = solution.state(:,2);

u_guess = solution.control;

t_guess = solution.time;

clear solution

%GPOPS Setup

% Phase 1 Information

iphase = 1;

limits(iphase).intervals = 1;

limits(iphase).nodesperint = 10;

limits(iphase).time.min = [t0min tfmin];

limits(iphase).time.max = [t0max tfmax];

% LIMITS ON STATE AND CONTROL VALUES THROUGHOUT TRAJECTORY

% to constrain final altitude use:

% limits(iphase).state.min(1,:) = [a0 amin af];

% limits(iphase).state.max(1,:) = [a0 amax af];

% to leave final altitude unconstrained use:

limits(iphase).state.min(1,:) = [a0 amin amin];

limits(iphase).state.max(1,:) = [a0 amax amax];

limits(iphase).state.min(2,:) = [nu0 numin nuf];

limits(iphase).state.max(2,:) = [nu0 numax nuf];

limits(iphase).control.min = umin;

limits(iphase).control.max = umax;

% LIMITS ON PARAMETERS, PATH, AND EVENT CONSTRAINTS

limits(iphase).parameter.min = []; % None

limits(iphase).parameter.max = []; % None

limits(iphase).path.min = []; % None

limits(iphase).path.max = []; % None

90

limits(iphase).event.min = []; % None

limits(iphase).event.max = []; % None

% GUESS SOLUTION

clear guess

guess(iphase).time = t_guess;

guess(iphase).state(:,1) = a_guess;

guess(iphase).state(:,2) = nu_guess;

guess(iphase).control = u_guess;

guess(iphase).parameter = []; % No parameters in Phase 1

linkages = [];

setup.name = ’Phasing-Maneuver-Problem’;

setup.method = ’gauss’;

setup.funcs.cost = ’phasingmaneuverCost’;

setup.funcs.dae = ’phasingmaneuverDae’;

setup.limits = limits;

setup.guess = guess;

setup.linkages = linkages;

setup.derivatives = ’automatic’;

setup.direction = ’increasing’;

setup.autoscale = ’off’;

setup.solver = ’snopt’;

setup.mesh.grid = ’hp’;

setup.mesh.tolerance = 1e-3;

setup.mesh.iteration = 25;

setup.mesh.on = ’yes’;

setup.mesh.guess = ’yes’;

setup.mesh.nodelimit = 200;

91

output = gpops(setup);

solution = output.solution;

solution.control = unwrap(solution.control);

% Define variables

t_soln = solution.time; % time, s

t_min_soln = t_soln/60; % time, min

t_hr_soln = t_soln/3600; % time, hr

a_soln = solution.state(:,1); % semi-major axis, km

nu_soln = solution.state(:,2); % true anomaly, rad

nu_deg = nu_soln.*180/pi; % true anomaly, deg

th = solution.control; % control angle, rad

th_deg = th.*180/pi; % control angle, deg

%% PROPAGATE ORBIT FOR MANEUVERING SATELLITE

% Define time vector for integration

t_vec_man = t_soln(1):60:t_soln(end);

% Numerical Integration using ode45

options = odeset(’MaxStep’,6); %set ODE45 options

% NOTE: Function "LPE_Accel_maneuver" required

[t_man,x_man]=ode45(@LPE_Accel_maneuver,t_vec_man,x0,options); %call ODE45

% Separate Variables

a_man = x_man(:,1); % semi-major axis, km

e_man = x_man(:,2); % eccentricity

i_man = x_man(:,3).*180/pi; % inclination, deg

Omega_man = x_man(:,4)*180/pi; % RAAN, deg

w_man = x_man(:,5)*180/pi; % Argument of perigee, deg

nu_man = x_man(:,6)*180/pi; % True anomaly, deg

92

% Convert time to hours for plots

t_min_man = t_man./(60);

t_hr_man = t_man./3600;

% From numerical intergration results calculate r and v in the ECF frame

% NOTE: Function "coe2rv" is required

[x, y, z, xdot, ydot, zdot] =...

coe2rv(a_man, e_man, i_man, Omega_man, w_man, nu_man, t_man);

% Calculate latitude and longitude from ECF position

fi_man = atan2(y,x)*180/pi; % longitude, deg

lamda_man = asin(z./sqrt(x.^2+y.^2+z.^2))*180/pi; % latitude, deg

% These values can be used to plot the ground track of the maneuvering orbit

%% PLOT OPTIMAL SOLUTION

figure % Open new figure

subplot(221)

plot(t_hr_soln,a_soln)%,’Linewidth’,1.5)

xlabel(’Time, hr’)

ylabel(’Semi-major axis, km’)

grid on

subplot(222)

plot(t_hr_soln,nu_deg)%,’Linewidth’,1.5)

xlabel(’Time, hr’)

ylabel(’True Anomaly, deg’)

grid on

subplot(223)

plot(t_hr_soln,th_deg)%,’Linewidth’,1.5)

xlabel(’Time, hr’)

93

ylabel(’Control Angle, deg’)

grid on

% Plot Eccentricity

subplot(224)

plot(t_hr_man,e_man)%,’Linewidth’,1.5)

xlabel(’Time, hr’)

ylabel(’Eccentricity’)

grid on

%suptitle (’Optimal Solution’)

%% PLOT GROUND TRACK

index = find(t_ref >= 14*Pref);

% plot ground track

landareas = shaperead(’landareas.shp’,’UseGeoCoords’,true);

figure

geoshow(landareas)

hold on

plot(fi_ref(index(1):end),lamda_ref(index(1):end),’.’,’MarkerSize’,5)

% plot(fi_man(index(1):end),lamda_man(index(1):end),’r.’,’MarkerSize’,5)

% plot(fi_tgt,lamda_tgt,’ro’,’MarkerSize’,10)

plot(fi_man(end),lamda_man(end),’^’,’MarkerFaceColor’,’k’,’MarkerSize’,10)

ind = find(t_ref == t_man(end));

plot(fi_ref(ind),lamda_ref(ind),’o’,’MarkerFaceColor’,’k’,’MarkerSize’,10)

grid on

xlabel(’Longitude, deg’,’fontsize’,14)

ylabel(’Latitude, deg’,’fontsize’,14)

legend(’Reference Ground Track’,’Position of Maneuvering Satellite at t_f’,...

’Position of Reference Satellite at t_f’)

hold off

94

Cost Functional

function [Mayer,Lagrange]=phasingmaneuverCost(sol)

%%%

% Written by: Capt Costas Zagaris, AFIT Master’s Student

% Last Edited on: 9 Jan 2012

%

% This function file is the cost function that is to be extremized using

% GPOPS. The function defines a Mayer cost and a Lagrange cost separately

% and GPOPS combines the two to form the Bolza cost function. The input to

% the function file is the optimal solution from GPOPS and the outputs are

% the Mayer cost and the Lagrange cost.

%%%

% Define variables for time and final time

tf = sol.terminal.time;

t = sol.time;

% Define Mayer cost

Mayer = tf;

% Define weighting factor for control usage

alpha = 0e-4; % Set to zero if no penalty on control usage is needed

% Define Lagrange Cost

Lagrange = alpha*(sol.control.*sol.control);

Differential Algebraic Equations

function daeout = phasingmaneuverDae(sol)

%%%

% Written by: Capt Costas Zagaris, AFIT Master’s Student

% Last Edited on: 9 Jan 2012

%

95

% This function file defines the simplified first order differential

% equations governing the dynamics of the system. GPOPS uses these

% equations to enforce constraints on the optimal solution. The input to

% this function file is the optimal solution, and the output is a matrix

% containing the state derivatives.

%%%

% declare global variables

global a0 mu nu0 nuf A

% Define state and control variables

t = sol.time;

s = sol.state;

u = sol.control;

a = s(:,1); % First state - semi-major axis

nu = s(:,2); % Second state - true anomaly

% Define first order ODEs governing state dynamics

adot = 2/sqrt(mu).*a.^(3/2).*A.*sin(u);

nudot = sqrt(mu./(a.^3));

% Form matrix output

daeout = [adot nudot];

96

Appendix C. Feedback Control Algorithm in MATLAB

This Appendix includes the code that was written for the feedback control algorithm.

The code is comprised of a main m-file that is used to run the algorithm, and two

function files. The first function file is the ODE45 script used to propagate the

maneuver trajectory and includes the computation of the control input. The second

function is used to solve the analytic expression for ∆t, and calculate the required

maneuvering time and drifting time. For the calculation of sidereal time, a series

of functions are called that are not provided here. These scripts were taken from

Vallado [11].

Main Code

%%

% MODEL FOR LYAPUNOV FEEDBACK CONTROLLER

% Written by: Capt Costas Zagaris, AFIT Master’s Student

% Last Edited on: 9 Jan 2012

% OBJECTIVE: The objective of this code is to compute a low-thrust orbit

% transfer trajectory using a nonlinear Lyapunov feedback controller. The

% spacecraft is required to achieve 30 seconds of Delta-t, for a given

% amount of lead time.

% MANEUVER PROFILE: The satellite starts at a near circular orbit with a

% given altitude, and will maneuver to achieve a given set of orbital

% elements. The Lyapunov controller computes a control unit vector to

% achieve the desired changes in orbital elements. Magnitude of the

% acceleration control vector is assumed constant (no throttling).

%%

close all; clear all; clc;

97

format long;

% Declare global variables

global mu Re omega_earth gamma_g m0 T A g0 Isp...

a_des e_des i_des Omega_des w_des nu_des...

counter u_hist t_hist u_norm_hist x_hist DeltaV DeltaV_req t_start...

thruster_on thruster_off

% Define constants

mu = 3.986e5; % km^3/s^2

Re = 6378.137; % Equatorial Earth Radius, km

omega_earth = 7.2921e-5; % Earth’s rotation rate, rad/s

counter = 0; % counter variable used to keep track of values computed

% throughout numerical integration

% Vehicle Parameters

m0 = 1000; % kg, Vehicle mass

T = 1; % Constant thrust, Newtons

g0 = 9.80665; % gravitational constant at sea level, m/s^2

Isp = 1500; % Engine specific Impulse, s

% Duty cycle parameters - COMMENT OUT IF NOT NEEDED

thruster_on = 10; % duration of pulses, sec

thruster_off = 120; % duration between pulsed, sec

ratio = thruster_on/(thruster_on+thruster_off);

A_approx = ratio*T/m0*10^(-3); % approximate constant acceleration

% magnitude used to compute required DeltaV, km/s^2

%% DETERMINE TARGET ORBIT PARAMETERS

% Enter the date to calculate appropriate Greenwich sidereal time at epoch

98

Yr = 2011; % Year

Mo = 6; % Month, 1-12

D = 14; % Day, 1-31

H = 16; % Universal Time, Hour 1-23

M = 0; % Universal Time, Minutes 0-59

S = 0; % Universal Time, Seconds 0-59.999

JD = julianday(Yr,Mo,D,H,M,S); % Calculates Julian Date

wgs84data % load global conversion factors

gamma_g = gstime(JD); % Clalculates Greenwich sidereal time at start

%% INITIAL CONDITIONS

a0 = 7378; % Initial semi-major axis, km

e0 = 0; % Initial eccentricity

i0 = 45*pi/180; % Initial inclination, rad

Omega0 = 0; % Initial RAAN, rad

w0 = 0; % initial argument of perigee ,rad

nu0 = 0; % initial mean anomaly, rad

% Compute period of reference orbit

Pref = 2*pi*sqrt(a0^3/mu); % sec

% Define desired timing parameters

delT_des = 30; % desired amount of delta-t, sec

t_avail = 24*3600; % total available amount of time (lead time), sec

t_start = 0*3600; % initial time before spacecraft starts thrusting, sec

% Define integration timing

ti = 0; % Start time

tf = t_avail; % End time, sec

t_step = 60; % step size, sec

99

t_vec = ti:t_step:tf; % time vector

%% PROPAGATE REFERENCE ORBIT

% Define intial state vector and integration timing

x0_ref = [a0 e0 i0 Omega0 w0 nu0];

% Numerical Integration using ode45

options = odeset(’MaxStep’,6); %set ODE45 options

% NOTE: Function "LPE_Accel" required

[t_ref,x_ref]=ode45(@LPE_Accel,t_vec,x0_ref,options); %call ODE45

% Separate Variables

a_ref = x_ref(:,1); % Semi-major axis, km

e_ref = x_ref(:,2); % Eccentricity, unitless

i_ref = x_ref(:,3).*180/pi; % Inclination, deg

Omega_ref = x_ref(:,4)*180/pi; % RAAN, deg

w_ref = x_ref(:,5)*180/pi; % Argument of perigee, deg

nu_ref = x_ref(:,6)*180/pi; % True anomaly, deg

% These are the COEs for the reference orbit propagated for the desired

% amount of time

% SANITY CHECK: Since the reference orbit represents 2-body motion the COEs

% should be constant!

% Convert time to hours for plots

t_hr_ref = t_ref./(3600);

% From numerical intergration results calculate r and v in the ECF frame

% NOTE: Function "coe2rv" is required

[x, y, z, xdot, ydot, zdot] = ...

100

coe2rv(a_ref, e_ref, i_ref, Omega_ref, w_ref, nu_ref, t_ref);

% Calculate latitude and longitude from ECF position

sat_long_ref = atan2(y,x)*180/pi; % longitude, deg

sat_lat_ref = asin(z./sqrt(x.^2+y.^2+z.^2))*180/pi; % latitude, deg

%% COMPUTE REQUIRED DELTA-V AND CONTROL INPUT

% Compute true anomaly after intial coasting period

nu_start = nu0 + (t_start)*sqrt(mu/(a0^3));

% Compute desired parameters

[nu2,a_final,DeltaV_req,t_man,t_coast] = ...

thrust_coast_combo(a0, nu_start, t_avail-t_start, delT_des, A_approx);

% Check to see if unique solution was found

if isempty(t_man)

disp(’ERROR: The Delta-t requested is not achievable in the time available’)

else

% Desired Final Parameters

a_des = a_final; % desired semi-major axis

e_des = e0; % desired eccentricity, no change

i_des = i0; % desired inclination, no change

Omega_des = Omega0; % desired RAAN, no change

w_des = 0; % desired argument of perigee, arbitrary

nu_des = nu2; % desired true anomaly

% Initial State Vector

x0 = [a0 e0 i0 Omega0 w0 nu0 m0];

% PROPAGATE ORBIT

options = odeset(’MaxStep’,6); %set ODE45 options

[t,x]=ode45(@LPE_Accel_Lyap,t_vec,x0,options); %call ODE45

101

% Separate Variables

a = x(:,1); % Semi-major axis, km

e = x(:,2); % Eccentricity

i = x(:,3).*180/pi; % Inclination, deg

Omega = x(:,4)*180/pi; % RAAN, deg

w = x(:,5)*180/pi; % Argument of Perigee, deg

nu = x(:,6)*180/pi; % True anomaly, deg

% Convert time to hours for plots

t_hr = t./(3600); % time vector associated with states

t_hist_plt = t_hist./(3600); % time vector associated with control

% Compute control angles from control vector

beta = asin(u_hist(3,:)./A)*180/pi; % Out-of-plane angle, deg

alpha = atan2(u_hist(2,:)./A, u_hist(1,:)./A)*180/pi; % In-plane angle

% Calculate r and v in ECI and ECF frames

[x_ecf, y_ecf, z_ecf, xdot, ydot, zdot, x_eci, y_eci, z_eci] = ...

coe2rv(a, e, i, Omega, w, nu, t);

% Calculate latitude and longitude from ECF position

sat_long = atan2(y_ecf,x_ecf)*180/pi; % longitude, deg

sat_lat = asin(z_ecf./sqrt(x_ecf.^2+y_ecf.^2+z_ecf.^2))*180/pi;

% latitude, deg

% PLOT SOLUTIONS

figure % plot numerically integrated states

subplot(2,2,1); plot(t_hr,a); grid on

xlabel(’Time, hrs’)

102

ylabel(’Semi-major Axis, km’)

subplot(2,2,2); plot(t_hr,e); grid on

xlabel(’Time, hrs’)

ylabel(’Eccentricity’)

subplot(2,2,3); plot(t_hr,nu); grid on

xlabel(’Time, hrs’)

ylabel(’True Anomaly, deg’)

subplot(2,2,4); plot(t_hist_plt,alpha); grid on

xlabel(’Time, hrs’)

ylabel(’In-plane Angle, deg’)

% plot ground track

% pick values for last two orbits

num_orbits = round(t_avail/Pref) - 2;

index = find(t_ref >= num_orbits*Pref);

landareas = shaperead(’landareas.shp’,’UseGeoCoords’,true);

figure

geoshow(landareas)

hold on

plot(sat_long_ref(index(1):end),sat_lat_ref(index(1):end),’.’,...

’MarkerSize’,5)

plot(sat_long(end),sat_lat(end),’^’,’MarkerFaceColor’,’k’,...

’MarkerSize’,10)

plot(sat_long_ref(end),sat_lat_ref(end),’o’,’MarkerFaceColor’,’k’,...

’MarkerSize’,10)

grid on

xlabel(’Longitude, deg’)

ylabel(’Latitude, deg’)

title(’Satellite Ground Track’)

103

legend(’Reference Ground Track’,’Satellite Position at t_f’,...

’Reference Position at t_f’)

hold off

end

%% DISPLAY RESULTS

if isempty(t_man)

% Delta t undefined if no solution is found

Delta_t = [];

else

% Compute Delta t achieved at the end of the maneuver

Delta_t = nu2*sqrt(a0^3/mu) - t_avail;

end

fprintf(’The achieved Delta-t is %f seconds\n’,Delta_t)

fprintf(’The expended Delta-V is %f km/s\n’,DeltaV)

fprintf(’The final semi-major axis is %f km\n’,a_final)

ODE45 Function File

function[xdot]=LPE_Accel_Lyap(t,x)

%%%

% Written by: Capt Costas Zagaris, AFIT Master’s Student

% Last Edited on: 9 Jan 2012

%

% This function file defines the full set of first order differential

% equations governing the dynamics of the orbit in terms of orbital

% elements. A Lyapunov function is defined and used to compute a control

% vector in order to reach a desired state

%%%

% Declare global variables

104

global mu Re gamma_g m0 T A g0 Isp...

a_des e_des i_des Omega_des w_des nu_des...

counter u_hist t_hist u_norm_hist x_hist DeltaV DeltaV_req t_start...

thruster_on thruster_off

% Update counter

counter = counter + 1;

% Set up variables

a = x(1); e = x(2); i = x(3); Omega = x(4); w = x(5); nu = x(6); m = x(7);

% Define orbital parameters (to be recalculated every iteration)

h = sqrt(mu*a*(1-e^2)); % angular momentum

p = a*(1-e^2); % semilatus rectum

theta = w+nu;

r = p/(1+e*cos(nu)); % radius

b = a*sqrt(1-e^2); % semi-minor axis

% Define controller gains

Ka = 1; % Gain associated with semi-major axis

Ke = 0; % Gain associated with eccentricity

Ki = 0; % Gain associated with inclination

KOmega = 0; % Gain associated with RAAN

Komega = 0; % Gain associated with argument of perigee

Knu = 0;

% Check if desired orbit plane is achieved

if i == i_des && Omega == Omega_des

delta_nu = nu-nu_des; % Phase difference

% Implement Mean Motion Control

K = 10; % Gain associates with mean motion control

105

a_star = (-K/sqrt(mu)*delta_nu+1/(a^3/2))^(-2/3);

else

a_star = a_des;

end

% Form Lie Derivative of Lyapunov function

V = [Ka*(a-a_star)/(Re^2), Ke*(e-e_des), Ki*(i-i_des),...

KOmega*(Omega-Omega_des), Komega*(w-w_des), Knu*(nu-nu_des)];

% Form N matrix - last two rows set to zero to avoid singularities

N = [2*a^2/h*(e*sin(nu)), 2*a^2/h*p/r, 0;

1/h*p*sin(nu), 1/h*((p+r)*cos(nu)+r*e), 0;

0, 0, r*cos(theta)/h;

0, 0, r*sin(theta)/(h*sin(i));

0, 0, 0;

0, 0, 0];

% Compute control unit vector

u_norm = sqrt(V*N*N’*V’); % compute norm to make unit vector

% Compute Acceleration magnitude - accounting for change in mass

A(counter) = T/m*10^(-3); % km/s^2

% Compute the Delta-V added thus far

DeltaV = g0*Isp*log(m0/m)/1000; % km/s

% % for continuous thrusting: (COMMENT OUT IF NOT NEEDED)

% % Check if norm = 0 to avoid dividing by zero

% if u_norm == 0

% u = [0;0;0];

106

% % Check if DeltaV has reached the reuired value

% elseif DeltaV > DeltaV_req

% u = [0;0;0];

% % Check if time is past the required initial coasting period

% elseif t < t_start

% u = [0;0;0];

% else

% u = -A(counter)/u_norm*(N’*V’);

% end

% for thrust-coast cycle: (COMMENT OUT IF NOT NEEDED)

% Check if norm = 0 to avoid dividing by zero

if u_norm == 0

u = [0;0;0];

% Check if DeltaV has reached the reuired value

elseif DeltaV > DeltaV_req

u = [0;0;0];

% Check if time is past the required initial coasting period

elseif t < t_start

u = [0;0;0];

else % Implement thrust-coast duty cycle

% always apply thrust at the first iteration

if u_norm > 0 && counter == 1

u = -A(counter)/u_norm*(N’*V’);

% determine if it’s past the first iteration

elseif u_norm > 0 && counter > 1

ind = find(u_norm_hist); % return indices of non-zero values

if isempty(ind) % all entries are zero

u = -A(counter)/u_norm*(N’*V’);

107

elseif length(ind) == length(u_norm_hist) % all entries non-zero

thrust_time = t_hist(ind(end))-t_hist(ind(1));

% determine if thrust has been applied for 10 seconds or more

if thrust_time >= thruster_on

u = [0;0;0];

else

u = -A(counter)/u_norm*(N’*V’);

end

else

% there are zero and non-zero entries in the control norm vector

% return indices of zero values

ind_zeros = find(u_norm_hist == 0);

% determine where the last non-zero value is

if ind_zeros(end) < ind(end)

thrust_time = t_hist(ind(end))-t_hist(ind_zeros(end)+1);

% determine if thrust has been applied for 10 seconds or more

if thrust_time >= thruster_on

u = [0;0;0];

else

u = -A(counter)/u_norm*(N’*V’);

end

else

k = 1; % initialize counter variable for loop

while k < ind_zeros(end)

% determine if the value before the last zero entry is non-zero

if u_norm_hist(ind_zeros(end)-k) == 0

k = k+1; % update counter

else

coast_time = t_hist(ind_zeros(end))-...

108

t_hist(ind_zeros(end)-k);

% detrmine if there are non-zero entries AFTER

% the last zero entry

if ind(end) > ind_zeros(end)

thrust_time = t_hist(ind(end))-...

t_hist(ind_zeros(end)+1);

else

thrust_time = 0;

end

% determine if coasting time is more than 2 minutes

% and thrust has been applied for more than 10 seconds

if coast_time > thruster_off && thrust_time < thruster_on

u = -A(counter)/u_norm*(N’*V’);

else

u = [0;0;0];

end

break % break out of loop

end

end

end

end

end

end

u_hist(:,counter) = u; % save control input throughout integration

x_hist(counter,:) = x; % save state history

u_norm_hist(counter) = norm(u); % save norm of control input

t_hist(counter) = t; % save time variable throughout integration

109

% Define first order ODEs governing state dynamics

adot = 2*a^2/h*(e*sin(nu)*u(1) + p/r*u(2)); % semi-major axis change

edot = 1/h*(p*sin(nu)*u(1) + ((p+r)*cos(nu)+r*e)*u(2)); %eccentricity change

idot = r*cos(theta)/h*u(3); % inclination change

Omegadot = r*sin(theta)/(h*sin(i))*u(3); % RAAN change

wdot = 0; % remove singularity - ignore argument of perigee

nudot = sqrt(mu/(a^3)); % remove singularity - assume circular orbit

% throughout trajectory

if u == [0;0;0];

mdot = 0; % if no control input then mass doesn’t change

else

mdot = -T/(g0*Isp);

end

% Form matrix output

xdot = [adot edot idot Omegadot wdot nudot mdot]’;

% end function file

Thrust-drift Function File

function [nu2,a_final,DeltaV_req,t_man,t_coast] = ...

thrust_coast_combo(a0, nu0, t_avail, delT_des, A)

%%%

% Written by: Capt Costas Zagaris, AFIT Master’s Student

% Last Edited on: 9 Jan 2012

%

% This function file computes the required maneuvering and drifting time

% based on the amount of time available and the value of Delta-t desired.

%%%

global mu t_start

110

% from t_avail calculate nu2

nu2 = nu0 + (t_avail+delT_des)*sqrt(mu/(a0^3));

% define symbolic variable

syms x

% Define algebraic equation for Delta-t

eq = -delT_des + (nu2-nu0)*sqrt(a0^3/mu)-sqrt(mu)/A*((a0^(-2)+...

4/mu*A*(x-nu0))^(1/4)-a0^(-1/2))-(nu2-x)*sqrt((a0^(-2)+...

4/mu*A*(x-nu0))^(-3/2)/mu);

% Find solution

sol = solve(eq,x);

% Convert solution to type double from symbolic

nu1 = double(sol);

% Compute final semimajor axis reached

a_final = (a0^(-2)+4/mu*A*(nu1-nu0))^(-1/2);

% COmpute required maneuvering time and DeltaV

t_man = sqrt(mu)/A*((a0^(-2)+4/mu*A*(nu1-nu0))^(1/4)-a0^(-1/2));

DeltaV_req = A*t_man;

% Compute required drifting time

t_coast = (nu2-nu1)*sqrt((a0^(-2)+4/mu*A*(nu1-nu0))^(-3/2)/mu);

% end function file

111

Appendix D. Supporting Function Files

This Appendix includes other functions that were written during the development of

the algorithms.

ODE45 Function File for Reference Spacecraft

This function file propagates the equations of motion for the reference spacecraft.

function[xdot]=LPE_Accel(t,x)

%%%

% Written by: Capt Costas Zagaris, AFIT Master’s Student

% Last Edited on: 9 Jan 2012

%

% This function file defines the full set of first order differential

% equations governing the dynamics of the orbit in terms of orbital

% elements. These equations are used to propagate the reference orbit ahead

% in time. The input to this function is time and state solutions computed

% by ode45, and the output is the state derivatives.

%%%

% Declare global variables

global mu omega_earth gamma_g

% Set up variables

a = x(1); e = x(2); i = x(3); Omega = x(4); w = x(5); nu = x(6);

% Set acceleration to zero for reference case

ar = 0; atheta = 0; ah = 0;

% Define orbital parameters (to be recalculated every iteration)

h = sqrt(mu*a*(1-e^2)); % angular momentum

112

p = a*(1-e^2); % semilatus rectum

theta = w+nu;

r = p/(1+e*cos(nu)); % radius

b = a*sqrt(1-e^2); % semi-minor axis

% Define first order ODEs governing state dynamics

adot = 2*a^2/h*(e*sin(nu)*ar + p/r*atheta); % semi-major axis change

edot = 1/h*(p*sin(nu)*ar + ((p+r)*cos(nu)+r*e)*atheta); %eccentricity change

idot = r*cos(theta)/h*ah; % inclination change

Omegadot = r*sin(theta)/(h*sin(i))*ah; % RAAN change

% To avoid singularities set wdot to zero, and nu dot to the mean motion

wdot = 0; %1/(h*e)*(-p*cos(nu)*ar + (p+r)*sin(nu)*sin(nu)*atheta) - ...

%r*sin(theta)*cos(i)/(h*sin(i))*ah; % arg of perigee change

nudot = h/(r^2); %h/(r^2)+1/(h*e)*(p*cos(nu)*ar - (p+r)*sin(nu)*atheta);

% true anomaly change

% Form matrix output

xdot = [adot edot idot Omegadot wdot nudot]’;

% end function file

ODE45 Function File for Maneuvering Spacecraft

This function file is used to propagate the full set of equations of motion using the

optimal solution computed in the optimization algorithm. The function includes code

that finds the appropriate value of the control angle throughout the integration, by

fitting a cubic spline to the optimal solution.

function[xdot]=LPE_Accel_maneuver(t,x)

%%%

113

% Written by: Capt Costas Zagaris, AFIT Master’s Student

% Last Edited on: 9 Jan 2012

%

% This function file defines the full set of first order differential

% equations governing the dynamics of the orbit in terms of orbital

% elements. These equations are used to propagate the maneuver orbit ahead

% in time. The input to this function is time and state solutions computed

% by ode45, and the output is the state derivatives.

%%%

% Declare global variables

global mu omega_earth gamma_g solution A g0 Isp T

% Set up variables

a = x(1); e = x(2); i = x(3); Omega = x(4); w = x(5); nu = x(6);

% Define orbital parameters (to be recalculated every iteration)

h = sqrt(mu*a*(1-e^2)); % angular momentum

p = a*(1-e^2); % semilatus rectum

theta = w+nu;

r = p/(1+e*cos(nu)); % radius

b = a*sqrt(1-e^2); % semi-minor axis

% Optimal control from GPOPS solution

tt = solution.time; % optimal time solution

u = solution.control; % optimal control angle

% fit cubic spline on optimal control curve

u_spline = spline(tt,u); % returns polynomial coefficients

% evaluate cubic spline at time t

114

u_opt = ppval(u_spline,t);

% define acceleration components

ar_opt = A.*cos(u_opt);

atheta_opt = A.*sin(u_opt);

ah_opt = 0;

% Define first order ODEs governing state dynamics

adot = 2*a^2/h*(e*sin(nu)*ar_opt + p/r*atheta_opt); % semi-major axis change

edot = 1/h*(p*sin(nu)*ar_opt + ((p+r)*cos(nu)+r*e)*atheta_opt);

%eccentricity change

idot = r*cos(theta)/h*ah_opt; % inclination change

Omegadot = r*sin(theta)/(h*sin(i))*ah_opt; % RAAN change

% To avoid singularities set wdot = 0 and nudot to the mean motion

wdot = 0; %1/(h*e)*(-p*cos(nu)*ar_opt + (p+r)*sin(nu)*sin(nu)*atheta_opt) - ...

% r*sin(theta)*cos(i)/(h*sin(i))*ah_opt; % arg of perigee change

nudot = sqrt(mu/(a^3));

%h/(r^2)+1/(h*e)*(p*cos(nu)*ar_opt - (p+r)*sin(nu)*atheta_opt);

% true anomaly change

% Form matrix output

xdot = [adot edot idot Omegadot wdot nudot]’;

% end function file

Conversion file from orbital elements to position/velocity

This function file is a conversion between the classical orbital elements and the position

and velocity vectors, using the standard two body equations. This function is used to

calculate the latitude and longitude of the spacecraft, used to plot the ground track.

115

function [x_ecf, y_ecf, z_ecf, xdot, ydot, zdot, x_eci, y_eci, z_eci] = ...

coe2rv(a, e, i, Omega, w, nu, t)

%%%

% Written by: Capt Costas Zagaris, AFIT Master’s Student

% Last Edited on: 5 Oct 2011

%

% This function file defines the position and velocity of the satellite in

% the ECF frame based on the COEs. The input to this function is the COEs

% and time, and the output is the elements of the position vector and the

% velocity vector.

%%%

% Declare global variables

global mu omega_earth gamma_g ar aw as

% Convert angles to radians

i = i*(pi/180); % convert i to radians

Omega = Omega*(pi/180); % convert RAAN to radians

w = w*(pi/180); % convert w to radians

nu = nu*(pi/180); % convert nu to radians

% Pre-define vectors and matrices for efficiency

m = length(a); % length of all vectors

p = zeros(m,1);

r = zeros(m,1);

r_p = zeros(3,1,m);

v_p = zeros(3,1,m);

R3_w = zeros(3,3,m);

R1_i = zeros(3,3,m);

R3_Omega = zeros(3,3,m);

116

R3_gamma = zeros(3,3,m);

r_ECF = zeros(3,1,m);

v_ECF = zeros(3,1,m);

r_ECI = zeros(3,1,m);

v_ECI = zeros(3,1,m);

x_ecf = zeros(m,1);

y_ecf = zeros(m,1);

z_ecf = zeros(m,1);

xdot = zeros(m,1);

ydot = zeros(m,1);

zdot = zeros(m,1);

x_eci = zeros(m,1);

y_eci = zeros(m,1);

z_eci = zeros(m,1);

% Use for loop to calculate r and v for the entire time interval

for j = 1:m

% Calculate the semi-latus rectum

p(j) = a(j)*(1-e(j)^2);

% Calculate magnitude of radius vector

r(j) = p(j)/(1+e(j)*cos(nu(j)));

% write position vector in the perifocal frame

r_p(:,:,j) = [r(j)*cos(nu(j));r(j)*sin(nu(j));0];

% write the velocity vector in the perifocal frame

v_p(:,:,j) = sqrt(mu/p(j))*[-sin(nu(j));e(j)+cos(nu(j));0];

% Define rotation matrices to convert to ECI frame

R3_w(:,:,j) = [cos(w(j)) -sin(w(j)) 0;

sin(w(j)) cos(w(j)) 0;

117

0 0 1];

R1_i(:,:,j) = [1 0 0;

0 cos(i(j)) -sin(i(j));

0 sin(i(j)) cos(i(j))];

R3_Omega(:,:,j) = [cos(Omega(j)) -sin(Omega(j)) 0;

sin(Omega(j)) cos(Omega(j)) 0;

0 0 1];

% Define rotation matrix to convert to ECF frame

% Calculate Greenwich Local Sidereal time

gamma = gamma_g + omega_earth*(t(j)-t(1));

R3_gamma(:,:,j) = [cos(gamma) sin(gamma) 0;

-sin(gamma) cos(gamma) 0;

0 0 1];

% Perform coordinate transformation from perifocal to ECI frame

r_ECI(:,:,j) = R3_Omega(:,:,j)*R1_i(:,:,j)*R3_w(:,:,j)*r_p(:,:,j);

v_ECI(:,:,j) = R3_Omega(:,:,j)*R1_i(:,:,j)*R3_w(:,:,j)*v_p(:,:,j);

r_ECF(:,:,j) = R3_gamma(:,:,j)*r_ECI(:,:,j);

v_ECF(:,:,j) = R3_gamma(:,:,j)*v_ECI(:,:,j);

% Define variables

x_ecf(j) = r_ECF(1,1,j);

y_ecf(j) = r_ECF(2,1,j);

z_ecf(j) = r_ECF(3,1,j);

xdot(j) = v_ECF(1,1,j);

ydot(j) = v_ECF(2,1,j);

zdot(j) = v_ECF(3,1,j);

x_eci(j) = r_ECI(1,1,j);

y_eci(j) = r_ECI(2,1,j);

z_eci(j) = r_ECI(3,1,j);

118

end

% End of function file

119

Bibliography

1. Newberry, R. D., “Powered Spacefight for Responsive Space Systems,” High Fron-
tier , Vol. 1, No. 4, 2005, pp. 46–49.

2. Wertz, J. R., Responsive Space Mission Analysis and Design, Microcosm Inc.,
2007.

3. Co, T., Zagaris, C., and Black, J., “Responsive Satellites Through Ground Track
Manipulation Using Existing Technology,” AIAA Space 2011 Conference and Ex-
position, No. AIAA-2011-7262, Long Beach, CA, September 2011.

4. “USSTRATCOM Space Control and Space Surveillance,” http://www.

stratcom.mil/fUSSTRATCOM_Space_Control_and_Space_Surveillance, Ac-
cessed 8 September 2011.

5. Kelecy, T. and Jah, M., “Detection and Orbit Determination of a Satellite Exe-
cuting Low Thrust Maneuvers,” Acta Atronautica, Vol. 66, 2009, pp. 798–809.

6. Wiesel, W. E., Modern Orbit Determination, Aphelion Press, 2010.

7. Folcik, Z. J., Orbit Determination Using Modern Filters/Smoothers and Continu-
ous Thrust Modeling , Master’s thesis, Department of Aeronautics and Astronau-
tics, Massachusetts Institute of Technology, Cambridge MA, 2008.

8. Payte, P. J., Orbit Determination and Prediction for Uncorrelated Target Detec-
tion and Tracking , Master’s thesis, Graduate School of Engineering and Man-
agement, Air Force Institute of Technology (AU), Wright-Patterson AFB, OH,
2011.

9. Sanchez, M. M. and Pollard, J., “Spacecraft Electric Propulsion - An Overview,”
Journal of Propulsion and Power , Vol. 14, No. 5, 1998, pp. 688–699.

10. Thorne, J. D., Optimal Continuous-Thrust Orbit Transfers , Ph.D. thesis, Grad-
uate School of Engineering and Management, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, 1996.

11. Vallado, D. A., Fundamentals of Astrodynamics and Applications , Microcosm
Press, 2007.

12. Conway, B. A., editor, Spacecraft Trajectory Optimization, Cambridge Univeristy
Press, 2010.

13. Wiesel, W. E., Modern Astrodynamics , Aphelion Press, 2003.

14. Wiesel, W. E., Spaceflight Dynamics (Third Edition), Aphelion Press, 2010.

15. Schaub, H. and Junkins, J. L., Analytical Mechanics of Space Systems , American
Institute of Aeronautics and Astronautics, Inc., 2003.

16. Broucke, R. A. and Cefola, P. J., “On The Equinoctial Orbit Elements,” Celestial
Mechanics , Vol. 5, No. 3, 1972, pp. 303–310.

120

17. Kechichian, J. A., “Optimal Low-Thrust Rendezvous Using Equinoctial Orbit
Elements,” Acta Astronautica, Vol. 38, No. 1, 1996, pp. 1–14.

18. Chobotov, V. A., editor, Orbital Mechanics (Third Edition), American Institute
of Aeronautics and Astronautics, Inc., 2002.

19. Kirk, D. E., Optimal Control Theory , Dover Publications, 2004.

20. Bryson, Arthur E., J., Dynamic Optimization, Addison Wesley Longman, 1999.

21. Jacques, D., “Course Notes, MECH 622, Functional Optimization and Optimal
Control,” Graduate School of Engineering and Management, Air Force Institute
of Technology (AU), Wright-Patterson AFB OH.

22. Lawden, D. F., Optimal Trajectories for Space Navigation, Butterworth, 1963.

23. Marec, J.-P., Optimal Space Trajectories , Elsevier Scientific Publishing Company,
1979.

24. Alfano, S., Low Thrust Orbit Transfer , Master’s thesis, Graduate School of En-
gineering and Management, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, 1982.

25. Wiesel, W. E. and Alfano, S., “Optimal Many-Revolution Orbit Transfer,” Jour-
nal of Guidance, Control, and Dynamics , Vol. 8, No. 1, 1985, pp. 155–157.

26. Hall, C. D. and Collazo-Perez, V., “Minimum-Time Orbital Phasing Maneuvers,”
Journal of Guidance, Control, and Dynamics , Vol. 26, No. 6, 2003, pp. 934–941.

27. Ilgen, M. R., “Low Thrust OTV Guidance Using Lyapunov Optimal Feedback
Control Techniques,” Advances in the Astronautical Sciences , Vol. 85, Part 2,
No. AAS 93-680, 1993, pp. 1527–1545.

28. Naasz, B. J., Classical Element Feedback Control for Spacecraft Orbital Maneu-
vers , Master’s thesis, Virginia Polytechnic Institute and State University, Blacks-
burg, VA, 2002.

29. Gurfil, P., “Nonlinear Feedback Control of Low-Thrust Orbital Transfer in a
Central Gravitational Field,” Acta Atronautica, Vol. 60, 2007, pp. 631–648.

30. Petropoulos, A. E., “Low-Thrust Orbit Transfers Using Candidate Lyapunov
Functions with a Mechanism for Coasting,” AIAA/AAS Astrodynamics Specialist
Conference and Exhibit , No. AIAA 2004-5089, Providence, RI, August 2004.

31. Yang, G., “Direct Optimization of Low-Thrust Many-Revolution Earth-Orbit
Transfer,” Chinese Journal of Aeronautics , Vol. 22, 2009, pp. 426–433.

32. Jean, I. and de Lafontaine, J., “Autonomous Guidance and Control of an Earth
Observation Satellite Using Low Thrust,” Advances in the Astronautical Sciences ,
Vol. 116, Part 3, No. AAS 03-617, 2003, pp. 1829–1844.

121

33. Guelman, M. and Kogan, A., “Electric Propulsion for Remote Sensing from Low
Orbits,” Journal of Guidance, Control, and Dynamics , Vol. 22, No. 2, 1999,
pp. 313–321.

34. Rao, A. V. et al., User’s Manual for GPOPS Version 4.X - A MATLAB Software
for Solving Multiple-Phase Optimal Control Problems Using hp-Adaptive Pseu-
dospectral Methods .

35. Escobal, P. R., Methods of Orbit Determination, John Wiley & Sons, Inc, 1965.

36. Larson, W. J. and Wertz, J. R., editors, Space Mission Analysis and Deisgn,
Microcosm Press, 3rd ed., 2005.

122

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate

for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that

notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY)

22-03-2012
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From — To)
Jun 2011 – Mar 2012

4. TITLE AND SUBTITLE

Trajectory Control and Optimization for Responsive
Spacecraft

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Costantinos Zagaris, Capt, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/ENY)
2950 Hobson Way
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION REPORT
NUMBER
AFIT/GA/ENY/12-M13

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Intentionally Left Blank

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES This material is declared a work of the U.S. Government and is not subject to
copyright protection in the United States.

14. ABSTRACT

The concept of responsive space has been gaining interest, and growing to include systems

that can be re-tasked to complete multiple missions within their lifetime. The purpose of this

study is to develop an algorithm that produces a maneuver trajectory that will cause a

spacecraft to arrive at a particular location within its orbit earlier than expected. The time

difference, Δt, is used as a metric to quantify the effects of the maneuver. Two separate

algorithms are developed. The first algorithm is an optimal control method and is developed

through Optimal Control Theory. The second algorithm is a feedback control method and is

developed through Lyapunov Theory. It is shown that the two algorithms produce equivalent

results for the maneuvers discussed. In-plane maneuver results are analyzed analytically, and

an algebraic expression for Δt is derived. Examples are provided of how the analytic

expression can be used for mission planning purposes. The feedback control algorithm is then

further developed to demonstrate the simplicity of implementing additional capabilities.

Finally, a set of simulations is analyzed to show that in order to maximize the amount of Δt

achieved, a spacecraft must be allowed as much lead time as possible, and begin thrusting as

early as possible.

15. SUBJECT TERMS

Control & Optimization; Optimal Control; Feedback Control; Lyapunov Theory

16. SECURITY CLASSIFICATION OF:
UNCLASSIFIED

17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

 136

19a. NAME OF RESPONSIBLE PERSON

Dr. Jonathan Black; Instructor, AFIT

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include Area Code)

(937)255-3636, ext 4578

Email: jonathan.black@afit.edu

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Problem Statement
	Phase One: Optimal Control Methods for Responsive Maneuvers
	Phase Two: Feedback Control Methods for Responsive Maneuvers
	Phase Three: Scenario Simulation

	Thesis Outline

	Background
	Equations of Motion
	Inertial Position and Velocity
	Classical Orbital Elements
	Equinoctial Elements

	Optimal Control Methods
	Optimal Control Theory
	Numerical Methods for solving the TPBVP
	Applications of Optimal Control

	Feedback Control Methods
	Lyapunov Theory
	Applications of Feedback Control

	Summary

	Model Development and Methodology
	Optimal Control Formulation
	The Cost Functional
	The Euler-Lagrange Equations
	Algorithm Setup

	Feedback Control Formulation
	Gain Selection
	Controlling the Position of the Spacecraft Within the Orbit
	Thrust-coast Duty Cycle

	Defining Desired Final Spacecraft Position
	Summary

	Results and Discussion
	Optimal Control Results
	Test Case 1
	Test Case 2
	Test Case 3
	Test Case 4
	Summary of Optimal Control Results

	Feedback Control Results
	In-Plane Maneuver
	Out-of-Plane Maneuver
	Thrust-Coast Duty Cycle Implementation
	Summary of Feedback Control Results

	Analytical Approach
	Spacecraft Maneuver Simulation
	Simulation With Initial Coast Period
	Simulation With Thrust-Coast Duty Cycle

	Summary

	Conclusions and Future Work
	Overiew
	Recommendations for Future Work

	The Equations of Motion in Terms of Equinoctial Elements
	Optimal Control Algorithm in MATLAB
	Feedback Control Algorithm in MATLAB
	Supporting Function Files
	Bibliography

